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Abstract— A pan-tilt-zoom robotic camera can provide detailed
live video of selected areas of interest within a large potential
viewing field. To provide spatial context for human observers, it
is desirable to insert the resulting live video into a large spherical
panoramic display representing the entire viewing field. Accurate
alignment of the video stream within the panoramic display is
difficult due to small errors in the robot pan-tilt values and image
distortion due to nonlinear projection. Existing image alignment
algorithms cannot keep up with rapid changes in camera position.
In this paper, we present a constant-time image alignment
algorithm based on spherical projection and projection-invariant
selective sampling that accurately registers paired images at 25
frames per second on a standard PC. Experiments suggest that
the new alignment algorithm is faster than previous algorithms
by a factor four or more. In a companion paper [1], we present a
new calibration algorithm based on image variance density that
optimally estimates camera pan-tilt parameters.

I. INTRODUCTION

Scientific study of animals in situ requires vigilant observa-

tion of detailed animal behavior over months or years. Since

observatories are usually far away from network infrastructure

and a stable power supply, they can only be accessed via long

distance wireless communication with limited bandwidth. A

low-cost, low bandwidth, and energy-efficient solution is to

use a tele-operated robotic video camera. Equipped with a

high optical zoom lens and pan-tilt mechanism, the camera can

track a moving animal with no intrusiveness. To fit the band-

width constraint and satisfy the responsiveness requirement,

the video camera usually transmits a low resolution video (i.e.

≤ 640×480 pixels) with live frame rate (i.e. > 30 frames per

second). Therefore, it suffers from a limited field of view when

operated at high zoom levels. An example is the Panasonic

HCM 280. When set at a 22x zoom, this camera only covers

2.8◦ in its horizontal field of view, which looses context of

the observed animal behavior.

As illustrated in Figure 1, one way to address the problem is

to seamlessly merge the live low resolution video frames into a

high resolution panoramic video in real time. Due to the errors

introduced by camera potentiometer readings, merging video

frames must be based on image registration. Since images
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Fig. 1. A live video window is aligned with a panoramic display. It updates
the panoramic display as the camera moves.

usually share the same optical center and only differ in pan-tilt

positions, such image registration problems are referred to as

the image alignment problem [2].

Existing image alignment algorithms take seconds to align

a single image, which does not satisfy the system responsive-

ness requirement. We found that the alignment computation

usually involves two operations: image projection and image

matching. The former projects images into alignment space

and the later aligns the image by matching intensity values of

overlapping pixels or feature points. The computation bottle-

neck is caused by the coupling between the two operations. A

small shift of an image coordinate, which usually is denoted

in pan and tilt degrees, changes the image projection matrix

and hence changes the shape of the image in the alignment.

Therefore, both the projection and the matching have to be

repeated for each candidate pan-tilt setting. Since both the

projection and the matching are linear to the number of pixels

in the aligned image, repeating them extensively slows down

the computation.

Our image alignment method builds on the idea of decou-

pling the projection operations and the matching computations

to reduce repetitions in the computation. We achieve this

by two techniques. First, we pre-project all images onto a

spherical surface. The pre-projection operation significantly

reduces the projection distortion in alignment. Therefore, it

is possible to sample small square regions from the projected

image such that the distortion of each small square region is

negligible. We prove that the distortion can be approximated

by rotation. We then treat each cell as a rigid object and shift

cells to search for the best matching. The resulting constant

time algorithm can align frames as fast as 25 frames per



second on a laptop PC and is 4.5x faster than the currently

best algorithm.

II. RELATED WORK

Panoramic display is a emerging new way of visualizing re-

mote environments [3]. It involves a variety of research topics

including multi-camera systems, omni-directional vision, and

panorama construction. Applications exist in many fields such

as videoconferencing [4], distance learning [5], tele-operation

[6], [7], and natural environment observation [8].

A. Multiple-Camera System and Wide Angle System

When sufficient bandwidth is available, a live panoramic

display can be maintained with multiple fixed cameras.

Swaminathan and Nayar [9] use four wide angle cameras

to monitor a 360◦ field of view. Similarly, Tan, Hua, and

Ahuja [10] combine multiple cameras with a mirror pyramid

to create a high resolution panoramic video. Foote et.al. [4],

[5] mount five video cameras each with a 3mm lens and near

90◦ horizontal field of view to provide live omni-panoramic

video. When low/variable image resolution is acceptable, a

live panoramic display can be maintained with a single wide-

angle camera using a fish eye lens or parabolic mirrors [5],

[11]–[13].

B. Static Panorama Generation: Image Alignment Techniques

Our live panoramic video system builds on existing research

of static panorama construction techniques, which have re-

ceived a lot of research attention [14]. Panoramas can be clas-

sified as either cylindrical panoramas or spherical panoramas

according to the number of axes involved in camera motion.

A cylindrical panorama only involves pan motion, [15], [16]

and its construction is relatively simple and fast. However,

cylindrical panoramas cannot provide sufficient vertical field

of view for natural environment observation.

Constructing a spherical panorama is much more complex

because more parameters needs to be estimated in its nonlinear

transformation model. It relies on image alignment techniques,

which attempt to find the best set of transform parameters

for images to compose the panorama. The transformation

can be modeled by a projective projection model [17], [18].

After establishing the parameter model, the image alignment

problem searches for a optimized solution in parameter space.

Current image alignment techniques can be classified into

three categories: direct method [18]–[23], frequency domain

registration [24], [25], and feature-based image registration

[26]–[35]. The direct method directly compares intensity val-

ues of pixels from the overlapping images and is sensitive to

lighting conditions, while feature-based alignment works on a

sparse set of feature points and is less sensitive to lighting

conditions and needs less computation. Frequency domain

registration works well for translation, but has problems with

rotation.

Recent research on improving the speed of image alignment

focuses on the feature-based method, which extracts features

such as Harris corner point [26], [27], [29], Moravec’s in-

terest point [30], SUSAN corner point [33], vanishing point

System Resolution Bandwidth
Live Motion

Images
Our system Excellent Low Yes

Film-based panorama Excellent Low No
Wide-angle systems Poor Moderate Yes

Multi-cameras Good
Moderate

Yes
to High

TABLE I

A comparison of existing methods that can provide panoramic view.

[35], and Scale Invariant Feature Transform (SIFT) [36].

Torr and Zisserman [27] outline the feature-based method:

First, features are extracted automatically. An initial set of

matches are computed based on proximity and similarity of

their intensity neighborhood. These estimations inputs are

then placed into a robust estimation algorithm such as the

Least Median of Squares(LMedS) [28] or Random Sample

Consensus(RANSAC) [35] to choose the solution with the

largest number of inliers. Numerical minimization techniques

such as the Levenberg-Marquardt algorithm are then applied

to refine the estimation result from RANSAC.

Our work complements existing research by developing

numerical approximation methods. The existing approaches

either focus on creating a better and faster feature map [36]

or developing a faster algorithm to estimate transformation

parameters [27], [28], [35]. Instead, we analyze problem struc-

ture and find that the coupling factor between perspective pro-

jection and image matching increases the dimensionality of the

parameter estimation problem and requires heavy computation.

By employing appropriate projections and approximations, we

are able to reduce the problem dimensionality and significantly

improve on the speed of existing algorithms.

C. Panoramic Video

A high resolution panoramic video can be generated by

composing a set of consecutive panoramas. Consecutive

panorama can be built from registering a pre-recorded se-

quence of video frames [37]–[40]. Since conventional image

registration based panorama generation suffers from lengthy

computation time, existing panoramic video is constructed

offline and is referred to as film-based panorama in [5]. Recent

progress in feature detection methods such as SIFT [41]

further reduces computation time of panorama generation [36].

However, its speed is still much slower than the requirement of

live panoramic video. Our algorithm satisfies the requirement

of live panoramic video on a conventional laptop PC for the

first time.

In [5], Foote and Kimber summarize characteristics of dif-

ferent panoramic displays including multiple camera systems,

wide angle systems, film-based panorama, and their system

using Table I. We expand their table by adding our system for

comparison.

III. PROBLEM DEFINITION

A. Assumptions

We assume that all images are taken from a fixed camera

which performs pan and tilt movements. Thus all images share

the same optical center. Camera potentiometer readings give

an estimation of camera pan/tilt position. These readings are
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inherently approximate with error (i.e. ±1.5◦) and need to be

compensated by image alignment. We assume that the camera

intrinsic parameters including image resolution, camera focus

length, and CCD sensor size are pre-calibrated and known.

We also assume that the camera is a standard video camera

with Horizontal Field Of View (HFOV) less than or equal to

45 degrees depending on zoom settings.

B. Inputs and Outputs

The camera is allowed to rotate to different pan-tilt poses

to capture images as alignment algorithm input. We use the

approximate pan and tilt readings from the camera potentiome-

ter as initial input parameters for the alignment algorithm. Our

algorithm outputs accurate camera pan and tilt parameters for

real time panorama video construction.

C. Perspective Projection

Image acquisition in a perspective camera is a process

that maps a 3D world onto a 2D image plane, which can

be described by perspective projection model [14]. We use

notations in format of {•} to refer to a coordinate system in

the paper. Let us define,

• {W} as a 3D fixed Cartesian coordinate system with its

origin at camera optical center point O. We refer to it as

world coordinate system. A point in {W} is denoted as
W Q = W [x y z]T 1.

• {C} as a 3D Cartesian coordinate system with its origin

at O, its Z axis overlapping with optical axis, its X −
Y plane parallel with CCD sensor plane and its X axis

parallel to the horizontal direction of the image. In the

paper we refer to it as the camera coordinate system. A

point in {C} is denoted as CQ = C [x y z]T . Note that

{C} changes as the camera changes its pan-tilt settings.

• {I} as a 2D image plane for image I . The origin of

{I} is the center of the image. We refer to it as the

image coordinate system. A point in I is denoted as
Iq = [u v 1]T . In the rest of the paper, we use Q notation

to indicate a 3D Cartesian point and q to represent a 2D

coordinate.

Therefore, a point in {W} is converted to a point in {I} by

Iq = I
CK C

W R W Q, (1)

where rotation matrix C
W R maps a point from {W} to {C}

and is determined by camera extrinsic parameters. Intrinsic

camera parameters matrix I
CK projects the points from {C}

to {I}. To simplify the notation, we use K instead of I
CK in

the rest of the paper. According to our assumptions, K is a

fixed and known matrix.

D. Image Alignment Problem

2D image points in two overlapping images A and B can

be mapped with each other using a 3×3 matrix M , [14], [17],

[23] as,
Aq = K A

BR K−1 Bq = M Bq, (2)

1We use left superscriptions to indicate the coordinate system of the point.

where Aq and Bq are corresponding points in {A} and

{B}, respectively, and rotation matrix A
BR characterizes the

relationship between camera coordinate systems {CA} and

{CB} for image A and B, respectively. Since Equation 2 just

project pixels in B to {A}, we refer to the process as the

re-projection process and M as the re-projection matrix.
To align two images we must compute M that minimizes

the pixel differences between the two images. Among existing

error metrics for pixel differences, Sum of Squared Differences

(SSD) is one of the most popular metrics, [14], [22],

SSD =
i∈A∩B

IntensityB(Bqi)) − IntensityA(Aqi)
2
,

where set A ∩ B is the overlapping pixel set between image

A and image B, Aqi and Bqi are the ith overlapping pixel

from image A and image B, respectively, and IntensityA and

IntensityB are pixel intensity values for image A and B,

respectively.
Based on our assumptions, matrix K in Equation 3 is

known. M can be determined by camera pan and tilt settings.

Therefore, M contains the following independent variables:

camera pan angle pA and pB for two images, camera tilt angle

tA and tB for two images,

Aq = M(pA, tA, pB , tB)Bq.

Assume image B is the newly arrived image, (pB , tB) is

unknown and (pA, tA) were computed when A arrived to

the system. M can be determined by two unknown variables

(pB , tB),
Aq = M(pB , tB)Bq. (3)

Therefore, the image alignment problem is to solve the fol-

lowing optimization problem,

min
(pB ,tB)

i∈A∩B

IntensityB(M(pB , tB)Bqi))−IntensityA(Aqi)
2
.

(4)

Equation 4 clearly shows the coupling between re-projection

(i.e. computing Aqi = M Bqi) and intensity comparison.

Define m = |A∩B| as the number of pixels in A∩B and let

k be the number of candidate (pB , tB) pairs, a naive search

method can easily take O(km) re-projection operations. Since

the re-projection computation involves extensive float point

computation, km is usually very large and it dominates the

overall speed. We are interested in improving the speed by

decoupling the re-projection operation and the image matching

to reduce factor km.

IV. ALGORITHM

We use two techniques to decouple the re-projection oper-

ation and the image matching, which include a spherical pre-

projection and sampling of small regions. First, we pre-project

all images onto a spherical surface. The pre-projection signif-

icantly reduces the distortion caused by latter re-projection

in the alignment phrase. Therefore, it is possible to sample

small square regions from the projected image such that the

distortion of each small square region is negligible. In the

second step of the algorithm, we only need to rotate and shift

cells to search for the best matching. We first describe the

pre-projection operation that wraps images on a sphere.
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A. Spherical pre-projection
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Fig. 2. An illustration of spherical pre-projection and coordinate systems: q
in image coordinate system, q̃ on the local spherical coordinate system, and
CQ is the same point as q̃ but in the camera coordinate system.

Recall that I is the image captured by the camera. It is

first projected onto the surface of a sphere that is centered at

the camera optical center and has a radius the same as focal

length f . As illustrated in Figure 2, the projection generates a

wrapped image Ĩ based on a local spherical coordinate system
{Ĩ}. Let us define:

• q = (u, v)T as a point in I .

• q̃ = (p, t)T as the corresponding point in Ĩ .

The spherical pre-projection that projects q to q̃ is,

p = arctan(
u

f
), (5a)

t = − arctan(
v

u2 + f2
). (5b)

Each point in Ĩ is defined using local pan and tilt spherical

coordinates with units in radians. Spherical coordinate system

{Ĩ} usually consists of three elements including radius, pan,

and tilt. Since image Ĩ is on the spherical surface with the

same radius as f for all pixels, we omit it and yield a 2D

representation. Also, q̃ = (0, 0)T overlaps with q = (0, 0)T .

Note that {Ĩ} is centered at each image and is different from

the global spherical coordinate defined by real camera pan and

tilt settings.

200 u -200 -600 -1000 

-400 

-200 

0 

200 

400 

v 

(a)

0.8 

0.4 

0 

-0.4 

-0.8 
-1.5 -0.5 -1 0 0.5 p 

t 

(b)

Fig. 3. Comparison of image distortion caused by the re-projection operation
(a) in the original image space and (b) on the spherical surface. In this
example, we perform perspective projection computation to map a rectangular
image to another new location that shares 30◦ tilt value and has 30◦ pan
difference.

We know that images must be in the same coordinate

system before computing the SSD. Re-projection matrix M

in Equation 4 projects image B into {A}. A similar re-

projection operation should be performed after the spherical

pre-projection and before computing SSD. We are interested

in discovering if the amount of distortion introduced by the re-

projection process will be different before and after spherical

pre-projection. Figure 3 suggests that the distortion in the

spherical surface is significantly less than that in the original

image space. Since the absolute distortion is an increasing

function of image size, we conjecture that if we sample a

very small square region on the spherical surface, which is

named as cell, the distortion for each cell should be negligible

after the spherical pre-projection. If so, it is possible to reduce

the re-projection cost in image alignment.

B. Distortion Invariant in Cell Re-projection

To prove the conjecture, we explore the re-projection pro-

cess using both the local spherical coordinate system and

the camera coordinate system. Define Q = CQ = [x, y, z]T

as q̃ in {C} as illustrated in Figure 2. For simplification,

cos(θ) and sin(θ) are denoted as c(θ) and s(θ), respectively.

The relationship between {Ĩ} and {C} can be described by

function P and its inverse P−1,

q̃ =
p
t

=
arctan(x/z)

− arctan(y/
√

x2 + z2)
= P (Q), (6)

Q =
x
y
z

=
f · c(t)s(p)
−f · s(t)

f · c(t)c(p)
= P−1(q̃). (7)

Let Ã and B̃ be the resulting image from the spherical pre-

projection for image A and image B, respectively. Without

loss of generality, we select image Ã as the reference image.

We shift image B̃ around Ã. To align the two images, we need

to re-project B̃ into Ã’s space,

Aq̃ = P (A
BR BQ) = P (A

BR P−1(B q̃))

= F (A
BR,B q̃).

(8)

where F is the re-projection function.

Equation 8 suggests that F is a nonlinear function and may

contain significant nonlinear distortions. However, Figure 3(b)

suggests that the distortion of a small cell under F may be

negligible. Let us define a squared-shaped cell in image Ã as,

A
C = {(Ap,A t)|Ap ∈ [Apo ± pc],A t ∈ [Ato ± tc]},

where (Apo,
Ato) is the cell center coordinate, and (pc, tc) is

the maximum cell span in pan and tilt directions. Similarly,

we define B
C as a cell in image B̃. For a small cell, we have

the following lemma.

Lemma 1: If the spherical cell is small (pc ≤ 5◦ and tc ≤
5◦), define point (B q̃o + ΔBq)) ∈ B

C and its corresponding

point (Aq̃o + ΔAq)) ∈ Ã,

F (A
BR, (B q̃o + ΔB q̃)) = Aq̃o + ΔAq̃, (9)

we have

ΔAq̃ ≈ RcΔB q̃, (10)

where Rc is a 2 × 2 rotation matrix. This means the cell dis-

tortion under re-projection defined in Equation 8 is negligible.

4



Proof: Let us expand our notations in detail.

• Aq̃o = [Apo,
Ato]T and B q̃o = [Bpo,

Bto]T ,

• ΔAq̃ = [ΔAp, ΔAt]T and ΔB q̃ = [ΔBp,ΔBt]T .

For vector calculus, we know that

∇Q =
fc(t)c(p) −fs(t)s(p) c(t)s(p)

0 −fc(t) −s(t)
−fc(t)s(p) −fs(t)c(p) c(t)c(p)

dp
dt
df

(11)

Therefore, we have

Δx
Δy
Δz

= f
c(t)c(p) −s(t)s(p) m13

0 −c(t) −m23

−c(t)s(p) −s(t)c(p) m33

Δp
Δt
Δf

,

(12)

where m13 = c(t)c(p)/f , m23 = s(t)/f , m33 = c(t)c(p)/f
corresponds to the last column of the Jacobian matrix in

Equation 11, [Δx,Δy, Δz]T is the small displacement in

{C}, and [Δp, Δt,Δf ]T is the corresponding change in {Ĩ}.

Since we have {Ĩ} as part of a sphere, radius f remains

constant. Therefore Δf = 0. To move the negative sign out

of the second row of the matrix in Equation 12, we introduce

coefficient matrix H ,

H =
f 0 0
0 −f 0
0 0 f

.

Then Equation 12 can be rewritten as,

Δx
Δy
Δz

= H
c(t)c(p) −s(t)s(p) m13

0 c(t) m23

−c(t)s(p) −s(t)c(p) m33

Δp
Δt
0

,

(13)

Recall that t are the tilt positions with respect to the image

center inside an image. A standard camera has a maximum

horizontal field of view of 45◦ and a maximum vertical field

of view of 34◦. The maximum value of t is 34/2 = 17◦. Since

cos(17◦) = 0.956, therefore, 0.956 ≤ c(t) ≤ 1. The maximum

distortion is less than 5%, which is less than half a pixel for a

cell size of 20× 20 pixels. Since the distortion is very small,

instead we drop c(t) in the first column,

Δx
Δy
Δz

≈ H
c(p) s(p)s(−t) m13

0 c(−t) m23

−s(p) c(p)s(−t) m33

Δp
Δt
0

,

(14)

Since Δf = 0, we know that [m13,m23,m33]T can take

arbitrary values without affecting the equality in Equation

14. Let us choose m13 = s(p)c(−t), m23 = −s(−t), and

m33 = c(p)c(−t). Then we have,

c(p) s(p)s(−t) s(p)c(−t)
0 c(−t) −s(−t)

−s(p) c(p)s(−t) c(p)c(−t)
= RY (p)RX(−t),

(15)

where RY and RX are rotation matrices along Y axis and X
axis, respectively. Define ΔQ = [Δx,Δy, ΔZ]T and Δq̃ =
[Δp, Δt, 0]T , Now Equation 14 is,

ΔQ ≈ HRY (p)RX(−t)Δq̃ (16)

Hence, we have

ΔAQ ≈ HRY (Apo)RX(−Ato)
ΔAq̃

0
, (17)

and,

ΔBQ ≈ HRY (Bpo)RX(−Bto)
ΔB q̃

0
. (18)

Since ΔAQ = A
BRΔBQ, we get,

ΔAq̃
0

≈ RX(Ato)RY (−Apo)H−1

· A
BRHRY (Bpo)RX(−Bto)

ΔB q̃
0

.

(19)

Since H and H−1 are diagonal matrices, we have

H−1A
BRH = A

BR. Equation 19 becomes,

ΔAq̃
0

≈ RΔ
ΔB q̃

0
, (20)

where

RΔ = RX(Ato)RY (−Apo)A
BRRY (Bpo)RX(−Bto), (21)

is a rotation matrix because the multiplication of rotation

matrices yields a rotation matrix. On the other hand, the last

row has to satisfy 0 = 0 no matter what value ΔB q̃ takes.

This means RΔ has to be in the following format,

RΔ =
Rc 02×1

01×2 1 ,

where Rc is a 2 × 2 rotation matrix.

Lemma 1 suggests that each cell can be treated as a rigid

object in the projection, which could lead to a significant

computation savings when compared to methods that directly

use Equation 8. The next question is how to compute the

rotation matrix Rc, which can be characterized by a single

rotation angle θ. We have the following lemma,

Lemma 2: Recall that (pA, tA) and (pB , tB) are the pan and

tilt settings for image A and B, respectively. Rotation angle

θ of rotation matrix Rc can be approximated by,

θ ≈ arccos c(Apo)c(Bpo)c(pB − pA) + s(Apo)s(Bpo) ∗ α

+ s(pB − pA)s(Apo)c(Bpo)c(tA)

− s(pB − pA)c(Apo)s(Bpo)c(tB) .

(22)

where α is a function of (pA, tA) and (pB , tB) only and can

be pre-computed.

α = c(tA)c(tB)c(pB − pA) + s(tA)s(tB). (23)

(α is the dot product of Z axis of {CA} and {CB} in world

coordinate system.)

Proof: Let us use the following vectors,

• ΔAq̃
0

= [1/f, 0, 0]T ,

• ΔB q̃
0

= [1/f, 0, 0]T ,

• AX0A = HRY (Apo)RX(−Ato)
ΔAq̃

0
, and
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• BX0B = HRY (Bpo)RX(−Bto)
ΔB q̃

0
.

It is clear that AX0A and BX0B are unit vectors. By defining
W X0A and W X0B as their corresponding coordinate in {W},

we know that

c(θ) =< W X0A, W X0B >, (24)

from the definition of vector inner product. From coordinate

transform relationship, we know,

W X0A = W
CA

R AX0A

= RY (pA)RX(tA)HRY (Apo)RX(−Ato)[1/f, 0, 0]T

=
c(pA)c(Apo) − s(pA)c(tA)s(Apo)

s(tA)s(Apo)
−s(pA)c(Apo) − c(pA)c(tA)s(Apo)

.

Inserting them into Equation 24, we get Equation 22.

Remark It is worth mentioning that if two images share

similar pan positions (i.e. |pA − pB | ≤ 5◦), then Equation

22 becomes

θ ≈ arccos c(Apo)c(Bpo)+s(Apo)s(Bpo)c(tB − tA) . (25)

Recall that a standard camera has a maximum vertical field

view of 34◦. To guarantee the overlap between the two frames,

the maximum value of tB − tA has to be less than 17◦.

Therefore, 0.956 ≤ c(tB − tA) ≤ 1 and c(tB − tA) can be

approximated by 1. Hence, we have,

θ ≈ Bpo − Apo,

for this special case, which can further speed up the compu-

tation.

Based on the analysis, we develop a Cell-Based Image
Alignment Algorithm.

C. Cell-Based Image Alignment Algorithm

Cj 
ε(Cj ) 

A
~

B
~

oj

B
q
~

Fig. 4. An illustration of Cell-Based Image Alignment Algorithm. Image Ã
and image B̃’s barrel-like shape is due to spherical pre-projection.

As illustrated in Figure 4, our algorithm is based on a set of

small square-shaped cells scattered in the overlapping region.

Define kc as the number of cells, which is between 25 and 36

in most cases. Define Cj ⊂ Ã, 1 ≤ j ≤ kc as the jth cell.

From potentiometer reading and its error range, we know that

the matching region of F−1(Cj) ⊂ B̃ will be found within

region ε(Cj) ⊂ Ã, which is the gray region in Figure 4,

ε(Cj) = {(p, t) ∈ Ã|p ∈ [Apoj ± (pc + .5pmax)]

t ∈ [Atoj ± (tc + .5tmax)]},
(26)

where (Apoj ,
Atoj) = Aq̃oj is the center point of Cj , (pc, tc)

defines cell size, and (pmax, tmax) is the potentiometer error

range. For example, for the images captured from a Canon

VCC3 camera that has a 45◦ horizontal field of view, an

image size of 640×480-pixels, and ±1.5◦ potentiometer error,

ε(Cj) is ±20 pixels shifting range in Ã. We also know that

the inverse projection F−1(Cj) is the inverse rotation by −θ
around cell center Bqoj ,

F−1(Cj) = Rc(−θ)Cj .

Therefore, we transfer the optimization problem in Equation

4 to

min
(pB ,tB)

kc

j=1

IntensityB(Rc(−θ)Cj)− IntensityA(Cj)
2
, (27)

subject to,

Cj ⊂ ε(Cj). (28)

Since Cj is considered as a solid square with only rotation

and shifting, computing the solution becomes less costly. Each

candidate solution will determine orientation and location of

kc cells Rc(−θ)Cj ⊂ B̃, j = 1, ..., kc.
Since the relative position between cells are rigid and

known, the search for a solution is to simultaneously shift

all kc rotated cells in Ã and find the optimal solution with

the pre-computed Rc(−θ)Cj’s. Because kc is a relatively

small number (i.e. 25 ∼ 36) and each cell is very small

(i.e. 10 × 10 pixels), the computation is very fast. Define

(δpA, δtA) as Cj shifting variable such that δpA ∈ [±0.5pmax]
and δtA ∈ [±0.5tmax] to satisfy Equation 28. Because of the

image resolution limit, there are only a constant number of

(δpB , δtB) pairs.
Another benefit is that feature detection and spherical pre-

projection do not need to be computed for the entire image.

Only pixels in the selected cells and their neighboring search

regions need to be computed. Define n as the number of pixels

in image A and image B. Restricting the feature detection

range from the entire image to a fix number that is determined

by constant kc further cuts the running time from O(n) to

O(1). We summary the analysis above as the Cell-Based

Image Alignment Algorithm below.

Cell Based Image Alignment Algorithm

Select kc cells from the overlapping region in Ã. O(1)
Sphere projection O(1)
Feature detection in the cell and searching regions. O(1)
For each (δpB , δtB) O(1)

For each cell O(1)
Compute Cj

(*) Compute Rc(−θ)Cj ⊂ B̃, j = 1, ..., kc.

Compute SSD between R−1
c Cj ⊂ B̃ and Cj ⊂ Ã

End For
Report sum of SSD across all cells

End For
Output solution with the minimum SSD.

Therefore, we have,
Theorem 1: For an n-pixel image pair, the cell-based image

alignment algorithm runs in constant time.
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Remark Step (*) in Cell Based Image Alignment Algorithm

is in the For loop. It can be pre-computed using a table based

on (δpB , δtB), which will further improve the algorithm speed.

V. EXPERIMENTS AND RESULTS

We have implemented the algorithm and tested in-situ. The

computer we used for testing is a 1.6Ghz Centrino laptop PC

with 512RAM and 40GB hard disk.

A. Speed Test

We first compare the speed of our algorithm with the fastest

currently available method in [36]. We downloaded their autos-

titch program from their website and did a comparison using

21 images captured on the UC Berkeley campus as testing

data. Images are captured by a Canon VCC3 camera with

a 45◦ horizontal field of view. Each image has a resolution

of 320 × 240. Our algorithm aligns all 21 images in 881

miliseconds while the autostitch program in [36] needs 4

seconds. We are able to reach a frame rate of around 25 frames

per second on a conventional laptop PC. Our algorithm is 4.5x

faster than the autostitch program at a resolution of 320×240.

B. Field Tests

We are currently working with natural scientists to identify

testing sites. We will report more results in the future. Mean-

while, we are testing our systems in parks near networking

infrastructure. Figure 5 illustrates snapshot of live panoramic

videos generated during bird watching. Experiments were

conducted from in both College Station, Texas and Richardson

Bay Audubon Sanctuary in San Francisco Bay. We have col-

lected 2186 frames and the original panorama has a resolution

of 4000 × 1000. The camera used is a Panasonic HCM 280

networked pan-tilt-zoom camera.

VI. CONCLUSION AND FUTURE WORK

We propose a constant time algorithm to compose live

panoramic video to visualize remote natural environments

using a tele-operated robotic camera. Our algorithm seamlessly

aligns live video frames into a panoramic display in real time.

Existing alignment algorithms involves extensive computation

and cannot satisfy real time requirements. Our analysis shows

that the computational bottleneck in existing algorithms is

the repetitive computation of image projection and image

matching. To address the problem, we pre-project images onto

a spherical surface. The resulting constant time algorithm can

align frames as fast as 25 frames per second on a laptop PC.

Experiments show that the new algorithm is 4.5x faster than

the best algorithm available.

In the future, we will further improve the algorithm by

effectively choosing the location of each cell and/or weight

cells differently to improve performance without sacrificing

speed. To process the large amount of spatial video data, we

will develop new protocols and data structures for fast data

transmission, query, and storage. We will also consider adding

sensor inputs and a image processing module to automatically

drive the camera to capture interesting events.

ACKNOWLEDGMENTS

Special thanks are give to E. Brewer for providing camera instal-
lation site. Thanks are given to Q. Hu, Z. Goodwin, and T. Schmidt
for implementing part of the system. Our thanks to M. Pantaleano, A.
Parish, A. Coots, K. Jaehan, N. Amato, T. Lao, D. Volz, T. Ioerger, R.
Gutierrez-Osuna, V. Taylor for insightful discussions and feedback.

REFERENCES

[1] D. Song, N. Qin, and K. Goldberg, “A minimum variance calibration
algorithm for pan-tilt robotic cameras in natural environments,” in IEEE
International Conference on Robotics and Automation (ICRA), Orlando,
Florida, May 2006.

[2] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image
and Vision Computing, vol. 21, no. 2003, pp. 977–1000, June 2003.

[3] R. Benosman and S. B. Kang, Panoramic Vision. Springer, New York,
2001.

[4] J. Foote and D. Kimber, “Flycam: Practical panoramic video and auto-
matic camera control,” in IEEE International Conference on Multimedia
and Expo. ICME 2000, New York, NY, vol. 3, July 2000, pp. 1419–1422.

[5] ——, “Enhancing distance learning with panoramic video,” in Proceed-
ings of the 34th Hawaii International Conference on System Sciences,
2001.

[6] D. Song and K. Goldberg, “Sharecam part I: Interface, system ar-
chitecture, and implementation of a collaboratively controlled robotic
webcam,” in IEEE/RSJ International Conference on Intelligent Robots
(IROS), Nov. 2003.

[7] D. Song, A. Pashkevich, and K. Goldberg, “Sharecam part II: Approxi-
mate and distributed algorithms for a collaboratively controlled robotic
webcam,” in IEEE/RSJ International Conference on Intelligent Robots
(IROS), Nov. 2003.

[8] D. Song and K. Goldberg, “Networked robotic cameras for collabo-
rative observation of natural environments,” in The 12th International
Symposium of Robotics Research, (ISRR), San Francisco, CA, October
2005.

[9] R. Swaminathan and S. K. Nayar, “Nonmetric calibration of wide-angle
lenses and polycameras,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 10, pp. 1172–1178, October 2000.

[10] K.-H. Tan, H. Hua, and A. N., “Multiview panoramic cameras using
mirror pyramids,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 7, pp. 1941– 946, July 2004.

[11] S. Baker and S. K. Nayar, “A theory of single-viewpoint catadioptric
image formation,” International Journal of Computer Vision, vol. 35,
no. 2, pp. 175 – 196, November 1999.

[12] S. K. Nayar, “Catadioptric omnidirectional camera,” in Proceedings of
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Juan, Puerto Rico, June 1997, pp. 482–488.

[13] Y. Xiong and K. Turkowski, “Creating image-based vr using a self-
calibrating fisheye lens,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, San Juan,
Puerto Rico, June 1997, pp. 237–243.

[14] R. Szeliski, “Image alignment and stitching, microsoft research, techni-
cal report msr-tr-2004-92,” 2004.

[15] S. E. Chen, “QuickTime VR — an image-based approach to virtual
environment navigation,” Proceedings of the 22nd Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH 1995,
Los angeles, California, vol. 29, pp. 29–38, Aug 1995.

[16] B. Y. Kim, K. H. Jang, and S. K. Jung, “Adaptive strip compression
for panorama video streaming,” in Computer Graphics International
(CGI’04), Crete, Greece, June 2004.

[17] R. Hartley, “Self-calibration of stationary cameras,” in IJCV, vol. 22,
1997, pp. 5–23.

[18] H. Shum and R. Szeliski, “Panoramic image mosaics,” 1997, microsoft
Research:MSR-TR-97-23.

[19] S. Coorg and S. Teller, “Spherical mosaics with quaternions and dense
correlation,” International Journal of Computer Vision, vol. 37, no. 3,
pp. 259–273, 2000.

[20] S. B. Kang and R. Weiss, “Characterization of errors in compositing
panoramic images,” in Proceedings of IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, San Juan, Puerto
Rico, June 1997, pp. 103–109.

[21] R. Szeliski, “Image mosaicing for tele-reality applications,” in Proceed-
ings of the Second IEEE Workshop on Applications of Computer Vision,
Sarasota, USA, Dec 1994, pp. 44–53.

7



(a)

(b)

Fig. 5. Snapshots of panoramic videos created for bird watching in (a) Central Park, College Station, TX in Auguest 24, 2005 and (b) Richardson Bay
Audubon Sanctuary in San Francisco Bay, CA in Dec. 21, 2005.

[22] ——, “Video mosaics for virtual environments,” in Proceedings of IEEE
Computer Graphics and Applications, vol. 16, no. 2, Mar 1996, pp. 22–
30.

[23] R. Szeliski and H. Shum, “Creating full view panoramic image mosaics
and environment maps,” Proceedings of the 24th annual conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 1997, Los
Angeles, California, vol. 31, pp. 251–258, Aug 1997.

[24] E. D. Castro and C. Morandi, “Registration of translated and rotated
images using finite fourier transform,” in Proceedings of IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 9, no. 5, 1987,
pp. 700–703.

[25] B. S. Reddy and B. N. Chatterji, “An fft-based technique for translation,
rotation, and scale-invariant image registration,” in Proceedings of IEEE
Transactions on Image Processing, vol. 5, no. 8, Aug 1996, pp. 1266–
1271.

[26] C. J. Harris and M. Stephens, “A combined corner and edge detector,” in
Proceedings 4th Alvey Vision Conference, Manchester, 1988, pp. 147–
151.

[27] P. H. S. Torr and A. Zisserman, “Feature based methods for structure
and motion estimation,” in Proceedings of the International Workshop
on Vision Algorithm: Theory and Practice, Corfu, 1999, pp. 278–294.

[28] Z. Zhang, R. Deriche, O. Faugeras, and Q. T. Luong, “A robust technique
for matching two uncalibrated images through the recovery of the
unknown epipolar geometry,” Artificial Intelligence, vol. 78, pp. 87–119,
1995.

[29] I. Zoghlami, O. Faugeras, and R. Deriche, “Using geometric corners
to build a 2d mosaic from a set of images,” in Proceedings of IEEE
International Conference on Computer Vision and Pattern Recognition,
San Juan, Puerto Rico, June 1997, pp. 420–425.

[30] B. Hu, C. Brown, and A. Choi, “Acquiring an environment map through
image mosaicking,” in University of Rochester:TR-786, Nov 2001.

[31] G. Borgefors, “Hierarchical chamfer matching: a parametric edge match-
ing algorithm,” in Proceedings of IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 10, no. 6, Nov 1988, pp. 849–865.

[32] H. Li, B. S. Manjunath, and S. K. Mitra, “A contour-based approach

to multisensor image registration,” in Proceedings of IEEE Transactions
on Image Processing, vol. 4, no. 3, Mar 1995, pp. 320–334.

[33] S.-H. Cho, Y.-K. Chung, and J. Y. Lee, “Automatic image mosaic system
using image feature detection and taylor series,” in Proceedings of VIIth
Digital Image Computing: Techniques and Applications. Sydney, Dec.
2003, pp. 549–556.

[34] Y. Kanazawa and K. Kanatani, “Image mosaicing by stratified match-
ing,” in Proceedings of Statistical Methods in Video Processing Work-
shop, Denmark, Jan. 2002, pp. 31–36.

[35] W. Zhang, J. Kosecka, and F. Li, “Mosaics construction from a sparse set
of views,” in Proceedings of First International Symposium on 3D Data
Processing Visualization and Transmission, June 2002, pp. 177–180.

[36] M. Brown and D. Lowe, “Recognising panoramas,” in Proceedings
of IEEE International Conference on Computer Vision, Nice, France,
vol. 2, Oct 2003, pp. 1218–1225.

[37] M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu, “Mosaic
representations of video sequences and their applications,” in Signal
Processing: Image Communication, vol. 8, May 1996, pp. 327–351.

[38] E. Trucco, A. Doull, F. Odone, A. Fusiello, and D. Lane, “Dynamic
video mosaicing and augmented reality for subsea inspection and
monitoring,” Mar 2000.

[39] Z. Zhu, G. Xu, E. M. Riseman, and A. R. Hanson, “Fast generation
of dynamic and multi-resolution 360-degree panorama from video
sequences,” in Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, Florence, Italy, vol. 1, June 1999,
pp. 9400–9406.

[40] A. Agarwala, C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. Curless,
D. Salesin, and R. Szeliski, “Panoramic video textures,” in ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH 2005), Los Angeles,
CA, July 2005.

[41] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of 7th IEEE International Conference on Computer Vision,
Corfu, Greece, vol. 2, Sept 1999, pp. 1150–1157.

8


