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during that time window. The Satellite Frame Selection (SFS) i R S B "-*_u'y-_ zZones
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agement, we formalize the SFS problem based on a new reward ik :
metric that incorporates both image resolution and coverage. For L Bt e e
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a set ofn client requests we give a series of algorithms, the fastest e , r-——n Optimal
computes optimal results inO(n?) for satellites with continuously il : : -~  satellite
variable resolution. We have implemented the algorithms and ! i fmim ! frame
compare computation speed for all algorithms. il S
|. INTRODUCTION Fig. 1. The Satellite Frame Selection (SFS) problem: each time window

The first commercially-available high-resolution opticaqiefines the camera’s possible figld of view. Client requests for _ima_ges‘are
. . . shown as dashed rectangles. Given a set of requests, the objective is to

satellite, IKONOS, was launched in 1999 [6]. Since theompute the satellite frame that optimizes the coverage-resolution metric. The
satellite imaging has developed into a rapidly growing induselution in this case is illustrated with a solid rectangle.
try. According to the data from the Imaging and Geospatial
Information Society [29], the market is $2.44 billion in 2001
and growing at a rate of fifteen percent annually. Cliensed on how closely a requested viewing zone compares with
include weather prediction, search and rescue, disaster recdgandidate satellite image frame. The metric is proportional
ery, journalism, and government. Commercial satellites ai@ the intersection of the candidate frame and the requested
equipped with sophisticated cameras, which allow them to tawing zone and to the ratio of the resolution of the candi-
high-resolution images as they fly over the Earth. Commercite and the request. The latter discourages excessively large
cameras offer pan, tilt, and zoom (image resolution) contréfames with low resolution. Finding the frame that maximizes
Near Real Time (NRT) Imaging refers to freshly capturetptal reward is a non-linear optimization problem. Letbe
images that are delivered as quickly as possible, dependthg number of users. For a satellite with continuously variable
on the satellite’s trajectory: at any given time, the cameragsolution, we give a series of algorithms, the fastest runs in
field of view is restricted to a zone on the Earth’s surfacéme O(n?).
During each time window, a number of client requests for
images are pending, and only one image can be captured. We Il. RELATED WORK
consider the problem of automatically selecting pan, tilt, and . L .
zoom parameters to capture images that maximize reward. Sate||_|te Frar_n_e Selec_non IS r_elated to proble_ms in_job

The Satellite Frame Selection problem is illustrated iﬁchedulmg, facility location, spatial databases, videoconfer-

. L : cing and teleoperation.
Figure 1. We assume the satellite image frame is a rectans . S .
with a fixed aspect ratio. Input is the set ofiso-oriented he Satellite Space Mission problem (SM) [15] is to select

rectangular regions from users. We propose a reward me R:d sphedule a set of prs on a satglllte. Each capd|date job
as fixed duration, available time window, and weight. The
This work was supported in part by the National Science Foundatiggoal is to select a feasible sequence of that jobs maximizes

under 11S-0113147, by Intel Corporation, and by UC Berkeley's Center fghe sum of weights. This combinatorial optimization problem
Information Technology Research in the Interest of Society (CITRIS). For

more information please contact dzsong@ieor.berkeley.edu, frankst@cs.ud%l,known to be NP'hard-.Recem .researCh [7], [9], [18]1 [27]
or goldberg@ieor.berkeley.edu. on the SM problem and its variations focuses on developing



exact and approximate methods using humerical methods such
as column generation, Tabu search, and genetic algorithms.

Lemaitre et al. [20] study a related problem for the Earth
Observing Satellite (EOS), which has a three-axis robotic cam-
era that can be steered during each time window. Given a set of
requested zones, they consider the problem of finding a trajec-
tory for the camera that will maximally cover the requested
zones (they do not consider variations in zoom/resolution).
Their coverage problem is analogous to planning optimal
routes for lawn mowers and vacuum cleaners [10]. Researchers
have proposed greedy algorithms, dynamic programming al-
gorithms, and methods based on constraint programming and
Local Search. In our model, the time window is shorter and
the objective is to servo the camera to a single optimal position
with optimal zoom/resolution setting.

The structure of the SFS problem is related to the planar
p—center problem, which Megiddo and Supowit [23] showed I:I Accessible |:| Frame
to be NP-complete. Given a set of point demand centers on region
the plane, the goal is to optimally locaje service centers o _ _ L
that will minimize the worst case travel distance betweeFﬁg' 2. Satellite with accessible region, and frame definition.
client and server. Using a geometric approach, Eppstein [8]

found an algorithm for the the planar 2-Center problem in the SES problem is closely related to controlling a shared
O(nlog”n). Halperin et al. [16] gave an algorithm for therghotic webcam. We introduced the frame selection problem
2-center problem W'tgm obstacles th:;at runs in randomizedor rohotic webcams in a series of conference papers: exact
expected time)(m log”(mn) + mnlog” nlog(mn)). solution with discrete zoom [26], approximation solution with
~ The SFS problem is also related to “box aggregation” quentsntinuous zoom [24], [25], approximate solution with fixed
ing in spatial database research [30]. The spatial objects cogighm [17]. This paper presents exact solution with continuous

be points, intervals, or rectangles. Aggregation over points j§om which is also extending to image requests of any aspect
a special case of the orthogonal range search queries frpffg and introducing new reward metric.

computational geometry. Agarwal and Erickson [1] provide a
review of geometric range searching and related topics. Grossi IIl. PROBLEM DEFINITION
and Italiano [13], [14] proposed the cross-tree data structure, . . . . :
a generalized version of a balanced tree, to speed up rang bIthls l;sec‘tlélnn we formallze_thfe Satelllt;: Frame Selection
search queries in high-dimensional space. The continuity of fePPiem based on a new metric for reward.
solution space of our problem makes it impossible to simp'l&l )
evaluate a fixed set of candidate frames through queries. A- Input and assumptions

In the multimedia literature, Kimber and Liu et al. describe a The camera on a typical satellite orbits the Earth at a speed
multi-user robot camera for videoconferencing [19], [21]. Thegf more than 7km per second. As illustrated in Figure 2, a
formulate frame selection for multiple simultaneous requesiatellite with two axes allows its reflection mirrors to perform
as an optimization problem based on position and area mifch and roll motions, which allow the satellite to view a
overlap. To solve it, they propose an approximation baseectangular region. By rolling and pitching, the satellite can
on comparing the bounding box of all combinations of userccess a square region on the ground. As illustrated in the
frames. The main concern of their algorithm is speed rathiggure, the imaging time for such satellite is discretized into
than accuracy. Although they did not provide bounds on thadisjoint time slots. In each time slot, it outputs a rectangular
approximation, their approach is sufficient for videoconferenanage, which we refer to as a frame. Since most satellites
ing applications. cannot perform yaw rotation, the satellite frame has two of its

Our lab at Berkeley is studying collaborative teleoperatioedges parallel to its orbit.
systems where many users share control of a single physicalWe assume that the frame is a rectangle with fixed aspect
resource. Inputs from each user must be combined to generaté (4:3) and its width is proportional to the resolution. A
a single control stream for the robot. In the taxonomy proposéiple ¢ = [z,y, z] describes such a rectangle:, y] € R,
by Chong et al. [5], these are Multiple Operator Singlepecifies the center point of the frame with respect to a
Robot (MOSR) systems. An Internet-based MOSR systemadscessible regiom?,, and z specifies the resolution of the
described by McDonald, Cannon, and colleagues [4], [22]. frame. The pairz, y determines the pitch and roll angles of
their work, several users assist in waste cleanup using Poitte satellite. Az = 10 meter means a pixel in the image is
and-Direct (PAD) commands. Users point to cleanup locatioeguivalent to area of0 x 10 square meters. A highervalue
in a shared image and a robot excavates each location in turreans lower image resolution. The attainable resolution set
More recent developments on MOSR systems can be foundsnZ, so z € Z. For example, a frame has a width that is
[11], [12]. 1000 times the resolution and a length that is 1333 times

Orbit

time

B 1maging time slot Servo time slot



the resolution, then the area of the frame 18001333 x 22 d d
The width and the length of the frame are linear functions of + +
the resolution, which are defined a$z) andi(z) respectively.

For a given time slot, we receive requested view zones 1 1 b=1
from clients. Thei®" request,0 < i < n, is a rectangle

ri =[x, i, wi, 1, 24, u;), where[z;, y;] € R, specifies center b=c
point with respect to the accessible regian, [; are the width 0 > ) >
and the length of the requested rectanglejs the desired 1 z/z 1 zlz
resolution, and; is the utility for the request, which describes @) (b)

how much the client is willing to pay for the requested viev;gi
zone. This is also the maximum reward associated with thi
request. We assume that all requested viewing zones are iso-

oriented rectangles with a pair of edges parallel to satellige Comparison with similarity metrics.

orbit. . .
Given a set of requested viewing zones, we must compute In pattern recognition and computational geometry standard

a single frame=* that will yield maximum total reward for the similarity metrics are Symmetric Difference (SD) and Intersec-
company. The solution space is tion Over Union (IOU) [3], [2], [28]. For a requested viewing

zoner; and a candidate frame the SD metric is
=R, x Z=A{[z,y,7]|[r,y] € Ra,z € Z}. Area(r; U ¢) — Area(r; 0 ¢)
SetZ = [z, Z] is a continuous set. 5D = Area(r; Uc) '

. 3. Resolution discount function.

The intersection-over-union metric is
Area(r; Nc)
Area(r; Uc)

B. Reward Metric

Recall thatr; is thei!” requested viewing zone. Its corre- 10U =
sponding client has a utility; for this region. Defines; as the
reward from thei'" request. Let: = [z,y, z] be a candidate Compared with IOU, our Coverage-Resolution Ratio (CRR)
camera frame. If the; is fully covered byc, i.e.,r; C ¢, and Metric has similar properties:
the desired resolution is obtained, i.e;,> z, thens; = ;. e IOU and CRR attain their minimum value of 0 if and
If the resolution requirement is satisfied but the coverage is only if cnr; = 0,
partial, then the reward is discounted by a coverage ratio:.e both attain their maximum value if and only df= r;,
§; = ul% If z; < z (the resolution requirement is not « both are proportional to the area of r;, and
satisfied) then the reward should be discounted by a resolution both depend—albeit differently—on the sizescaindr;.

Md(% zi).  The differences between CRR and SD are that

discount factord(z, z;). Hence,s; = wu; =
As illustrated in Figure 3(a), the resolution discount function | e sp metrics is not piecewise linear inor y
« it is hard to extend SD to arbitrarily-shaped requested

d(z, z) is a truncated functiond < d(z,z;) < 1. It is an
increasing function of;/z because an image has more value viewing zones because SD will become non-normalized
for such cases,

as resolution increases. The resolution discount function we
« the SD metric only capture geometric similarity and do

propose is
not take into account the resolution difference.

=1-5D.

d(z, z) = min{(z/2)°,1}.

Let Resolution(r;) = z; and Resolution(c) = z, then our

reward function is a Coverage-Resolution Ratio (CRR), IV. ALGORITHMS
oy Area(rine) . ¢ Resolution(ri)\b 1 In [26], we defined the notion of “virtual corners”, which
si€) = u; Areal(r;) (( Resolution(c)> ) @) are intersections between extended edges of two requests.

The exponential discount factérdetermines how fast the We have [:t)rov_ed.;hat .S}n one fOf. tthelcorners A?IIhan cr)]ptzlrgal
frame image devalues as its resolution decreases. Figure §@ € must coincide with one ot virtual corner. ouy [ ],
only addresses problems with fixed resolution, this result is

shows two casesh = 1 andb = co. The case i9 = | . o L
corresponds to a scenario in which the user does not accBpP fcr_ue wher: is continuous. Th_|s _wrtgal corner opt|m2aI|ty
any image with a resolution that is lower than requested. “d'“‘?”_ca'ﬁ‘ reduce the 3'.3 optimization pr_oblem(l(m )
use the casé = 1 as default setting for numerical example optimization problem§ W'.th respect to varlakzle\_Ne then .
in the rest of the paper. show that eaph 1D optlm[zatlon p.roblem can be dlssected into
For n requests, the total reward is, O(n) piecewise p_olyr_10m|al functions, each of which can be
solved inO(n). Using incremental computation and a diagonal
- sweep, we show how to improve the running timetn?).

s(c) = Z si(rs, c). (2)
i=1
We want to finde* = arg max. s(c), the frame that maximizes A- Basic Virtual Corner Algorithm (BVC)
total reward. We will often writes(x, y, z) instead ofs(c) with For n requested viewing zones, there &én?) virtual cor-
c=lx,y,z] ners. The virtual corner optimality condition allows us to find



vl e Figure 5), so derivative-based approaches cannot be
o - 7 ] used directly. We refer to a maximak-interval on
P e sy LS Candidate which s(z) is smooth as a segment. We consider
e sl R frames four questions that form the basis for our algorithms.
_____ L T 1) Can we give a geometric characterization of the
=3 7 '];5:*"‘; Requested endpoints of the segments?
E | g L viewing 2) How many segments are ther(.a?. .
vy - : > zones 3) What is the closed-form description &fz) within

a single segment, and how complex is the compu-
Fig. 4. An example of the 1D optimization problem with respect.tdn tation (_Jf the maximum ofs(z) on that SeQ_me_nt?

this example, we assuniéz) = 4z, w(z) = 3z, b = 1, andu; = 1 for 4) How different are the closed-form descriptions of
i=1..n s(z) on two adjacent segments?

The first three questions lead to @axn*) algorithm; the

) . , fourth question results in an improvement@gn? log n).
the optimal frame by checking the candidate frames that havgye start with question 1).

one of their corners overlapped with one qf the virtual' CONers. pefinition 1: A critical z value is thez value such thas(z)
This means that we can reduce the or|g|_nal_3D optlm|zat|qu1ange‘,3 its closed-form representation.
problem in Equation (2) t@(n?) 1D optimization problems. | e 7 ;. . ) be the set of criticat values for virtual corner
Definep;(z) = Area(ri Nc), a; = Area(r;) = wil;, the 1D (. W Y "From Equation (4), we see that the non-smoothness
optimization problem is to find, comes from the non-smoothness of eithen((z;/z),1) or
n pi(z). The critical z values that come from the former type
maxs(z) = »_u;(pi(2)/a;) min((zi/2)", 1) (3) form a subsetZ’(z,,y,), those of the latter type a subset
: i=1 Z"(xy,y,). The former type is easy to deal with because
subject to the constraint that a corner of the candidate frafhedCcurs atz = z;, i = 1,...,n. Therefore, Z((z,, y,) =
¢ = [x,y, 2] coincides with a virtual corner. {zi[i=1,...,n}, s0|Z; (24, y»)| = n. Note thatZ/(z,,y,) is the
To study the 1D maximization problem in Equation (3)5@me for all virtual cornerge,, ), S0 Z(v, yo) = Zev
consider a virtual corner. For simplicity, we assume that the Obtaining Z!(z,,y,) is less straightforward. Depending
virtual corner is at the origin. Moreover, we assume th&{On the intersection topology, the intersection arga) of a
the virtual corner coincides with the lower left corer oféctangler; with an expanding candidate frames one of the
the candidate frame. (The virtual corner in Figure 4 is tHellowing 4 types: itis of type 0 ifp;(z) equals zero, of type
intersection of the extensions of the left edgergfand the 1 if pi(2) equals a positive constanty, of type 2 if p;(2)
bottom edge ofrs.) Placements in which one of the othefS described by a first-degree polynomial = + g0, and of -
three corners of the candidate frame coincides with the virtd¥Pe 3 if pi(2) is described by a second-degree polynomial
corner are handled in a similar fashion. We may be able Q@Z_QJrqq:lZJrqy:o, wheregio, ¢i1, andg;, are coefficients. We
eliminate some of the placements beforehand, but it reduct§ interested in how the type changes gsadually increases
the computation by only a constant factor. Now, we gradualffem 0% to +o0.
increasez and observe the value efz): Figure 5 shows the

function for the example in Figure 4. iy ! |:|
R
1
160 | attatatr T B r=--on Candidate
! N ! ' frame
T |
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! F2 ' Requested
------ viewing
0 zones
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Fig. 6. Examples for “fundamental rectangles”. In this figurg, and o are
type (a) rectangles;s is a type (b) rectangle, angd, is a type (0) rectangle.

P Lo i To further simplify this problem, we consider “fundamental
o 20 40 60 8 100 120 140 160 rectangles” from three classes.
z « Class (0): A rectangle that does not intersect Quadrant I,
Fig. 5. Reward function for the example in figure 4 as a function of image * Class (a): A reCtE_mgle that is fully Contalne_d in Quadrant
resolution . | and does not intersect the extended diagonal of the
candidate frame.
a. Critical z Values and Intersection Topologies. The o Class (b): A rectangle that is fully contained in the
function s(z) is a piecewise smooth function (see  Quadrant | and that has a diagonal that overlaps the

4



extended diagonal of the candidate frame.

Figure 6 gives examples for these three classes of fundamental
rectangles.

© S
@ l

[ Candidate frames O pi@ type

.______: Requested viewing zones Fig. 8. Examples of four requested viewing zone decomposition cases.

(b)

Fig. 7. Change ofp;(z) for the three classes of requested viewing zones

i + . . .
whenz gradually increases fron™ to +oo. As we can see from figure 8, a decomposed requested viewing
o _ zone can yield at most three fundamental rectangles that are
As shown in Figure 7, as increases, either class (a) or class (b). Every fundamental rectangle

« thep;(z) for a class (o) rectangle always remains type @herits thez; value of the original request.

« the p;(z) for class (a) rectangle starts from type 0, In summary, we claim that the requested viewing zones
changes to type 2 when its intersection with the expandan be classified and/or decomposed itt@:) fundamental
ing candidate frame begins, then changes to type 1 wheactangles that are either class (a) or class (b). Since each
it becomes fully contained. rectangle in class (a) or (b) generates (at most) two critical

« the p;(2) for a class (b) rectangle can start either frormalues, we find thatZ/ (x., y,)| = O(n). Combining this with
type 3 or type 0 depending on whether the bottom lefine bound on the size &/ (z,, y,) yields that| Z.(z,, y,)| =
corner of the rectangle coincides with the origin or not. )(n). Since the criticak values partition the axis intoO(n)
also changes to type 1 once it becomes fully containedegments, on each of whicf(z) is a smooth function, the

The transitions correspond to criticalvalues. following lemma is true. _

We can ignore class (o) fundamental rectangles becaus&€Mma 1. For each virtual corner, the-axis can be par-
they do not contribute to our objective function. A requesteifioned intoO(n) segments, on which(z) is smooth. _
viewing zone that is a fundamental rectangle from class (a)-emma 1 answers our question 2) from the previous section.
or (b) generates at most two critical values. Many of  C. Optimization Problem on a Segmertvith the knowl-
the requested viewing zones though will not be fundamengfige of question 1) and 2), we are ready to attack question
rectangles. We resolve this by decomposing those requests): derive a closed-form representations¢t) on a segment

b. Requested viewing zone decompositio requested and solvg the constrained optimization prqblem. We hgve
viewing zone that is not a fundamental rectangle intersects!a® following lemma. (The order of the resulting polynomial
least one of following: the positive-axis, the positivej-axis, depends on the resolution discount fadipr
and the extended diagonal of the expanding candidate framel.emma 2: For each segment;z) is a polynomial function
We treat the different intersection patterns and show that YWith 6 coefficientsyo, g1, g2, g3, 94, and gs,
each case the requested viewing zone can be decomposed b b1 b2 )
into at most four fundamental rectangles (see also Figure 8)5(?) = 902 "+ 912 """ + 227 """ + g3 + gaz + g52°. (4)

L . . Proof: For a virtual corne , let us assume the
« Ifthe requested viewing zone intersects only the diagon @, Yo)

I . !
. . egment is defined bl’, z”), wherez', 2" € Z.(x,,y,) are
then it can be decomposed into two class (a) rectang%\% adjacent criticak values. Then requested viewing zones
and one class (b) rectangle.

If the r ted viewing zone intersects onlv on iti\pave been classified and decomposed inte O(n) class (a)
° € requestedviewing zone Intersects only one positivg (b) rectangles. We denote those rectangles,as=1, ..., k.
coordinate axis, then it can be decomposed into a cl

) rectanale and a class (o) rectangle 8t us define sets’ = {il]z; < 2’} and setS” = {i|z >
I(f )the re £?Jested viewiflS (zZme intgrsécts the dia on”gl/ll}' From the definition of criticalz value, we know that
¢ 9 9 9ONAt (o7 2" for i = 1,..n so thatS’' U S = {1,....,k} and

and exactly one positive coordinate axis, then it can A S = . Therefore, Equation (3) becomes,
decomposed into two class (a) rectangles, one class (b)

rectangle, and one class (0) rectangle. _ . _ . YN
« If the requested viewing zone intersects the diagonal and 5(2) = lez;, uipi(z)/ai + 7%; wipi=)/as) (zi/2)" - (5)
both positive coordinate axes, then it can be decomposed
into one class (a) rectangle, one class (b) rectangle, andVe also defineS; be the set of rectangles with typgein-
two class (0) rectangles. tersection areas whene [2/, 2"), for j = 1,2, 3 respectively.




Recall thata; = w;l; is a constant; we have Virtual Corner with Incremental Computing (VC-IC)

Sort members o¥.(x,, yy) O(nlogn)

Z uipi(2)/a; = Z wigio/ as Compute first polynomial coefficients O(n)
P ie57nS, For each subsequent segment O(n)
e ‘ ‘ Update polynomial coefficients 0O(1)

+ ies/z,ms ui(gi1z + Gio)/ i Find maximum for the polynomial  O(1)

’ ) End For
+ Z ui(qiez” + g1z + io) /i . . . .
i€S7NSs The VC-IC algorithm improves the running time:

Theorem 2: The Virtual Corner with Incremental Comput-
&')riyg (VC-IC) algorithm solves the problem @(n? logn).

2) Virtual Corner with Incremental Computing and Diag-
onal Sweeping (VC-IC-DS)in the outer loop of the VC-
IC algorithm, sorting ofZ.(x,,y,) for each virtual corner

We can perform a similar transform for the second term
Equation (5)

> (wipi(2)/ai)(zi/2)" is the dominating factor. The question is: is it necessary to
ies sort critical z values repeatedly for each virtual corner? Recall
= 2 Z w2l qio /a; Ze(, yv) i the union of a seZ; and a setZ(zy, yu).
€S5S, Each critical z value in Z//(x,,y,) uniquely defines the

position of the upper right corner of the candidate frame on

—b g . , ! . S o L
t oz Z uiz; (g% + gio)/ i its extended diagonal, which is called critical point in the

(€8N figure 9(a). Each critical point corresponds to the point that
+ 27 Z iz} (qi22” + qinz + qio) /ai- the candidate frame start intersecting some requested viewing
1€5'NS3 zone or the point that the intersection between the candidate
frame and some requested viewing zone ends. This gives a
Combining them, we get Equation (4). B geometric interpretation for those criticalvalues. Figure 9(a)

The proof of Lemma 2 shows that Equation (3) can bEhOWs a case with two requested viewing zones and five critical
converted into Equation (4) irO(n) time. The maximum = values.

of Equation (4) can be found in constant time. Combining Let Z¢ (z.,y.) be the set of the correspondirgvalues of
Lemma 1 and Lemma 2 yields the Basic Virtual Corné?"e intersections between the extended diagonal and the ex-

Algorithm. tended edges, which is illustrated in Figure 9®)" (x,, ys)
also depends on virtual cornét,,, y,). As shown in Figure
Basic Virtual Corner (BVC) Algorithm 9(a) and Figure 9(b),
For each virtual cornefz,,, y,) O(n?)
Compute members of,.(z,, ) O(n) Ze"(@o,y) © Ze" (@0, o).
For each segment O(n) If we have a sorted sequenc&.”(z,,y,), we can get a
Compute polynomial coefficients O(n) sorted sequencg,”(x,,y,) by checking whether a point in
Find maximum for the polynomial ~ O(1) Z." (v, o) belONgS 10Z." (v, yo). This takesO(n) time
End For because there a®@(n) points in Z." (., v, ).
End For Figure 9(c) illustrates a nice property of the sorted sequence
Report the maximuns(c) and the corresponding'. of points in Z.”(x,,1.). In the figure, we have an ordered

] ] sequence of intersected points at the extended diagonal that

Theorem 1: The Basic Virtual Corner algorithm (BVCiarts from the origirD. we number the point closest to the
solves the problem id(n?) time. origin as point 1 and the second closest as point 2. As we

1) Virtual Corner with Incremental Computing (VC-IC): gradually move the extended diagonal downward and observe
The inner loop in the BVC algorithm take3(n?), which is what happens to the sorted sequence, we find that the order of
the product of two factorsd(n) segments and)(n) time to the sorted sequence does not change until the diagonal line hits
compute polynomial coefficients. One observation is that vea intersection between two extended edges, which is a virtual
do not need to re-compute the coefficients entirely if we solo®rner by definition. Let us define this virtual corner be the
the O(n) sub-problems in an ordered manner. Comparing tlaeljacent virtual corner to the virtual corner at the origin. Point
polynomial coefficients of two adjacent segments, we find thatand point 2 switch their order at the adjacent virtual corner
the difference is caused by the criticalthat separates the (i.e. the gray rectangle in the figure 9(c)). This phenomenon
two segments. The critical value belongs to some rectangleshows that if we have a sorted sequence of the intersection
Therefore, we only need to do a coefficient update on opeints at a virtual corner, we can get the sorted sequence at
polynomial to get another one. This update only takes constamt “adjacent virtual corner” in constant time.
time. To exploit this coherence we must sort the elements ofThis result can reduce the sorting cost frann logn) to
Z.(z,,yy) inthe inner loop to be able to consider the segment¥(n) if we handle the virtual corners in a diagonal order:
in order; this take®)(nlogn) time. We replace the inner loopimagine there is a sweep line that has same slope as the
in BVC by the following subroutine. extended diagonal and an interceptfato, we decrease the
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Overlapped Intersected points at a virtual corner

F|g 9. (a) Zc//(l'v,yv) for a two reques[ed Viewing zone case, (bflg 10. An example of computed optimal frame. (ShOWn in grey). We set
Z." (z,yo) are set of intersection points between the extended diagonal bf= 1 andu; = 1 for all requests and use VC-IC-DS Algorithm.

the candidate frame and the extended edges, (c) The two intersection points

switch order only at a virtual corner formulated by the intersection of the

two extended edges that generate the two intersection points, and (d) Sortjghd the request will be associated with. Two of them will
virtual corners in this order can reduce the sorting cost in the algorithm. be used to generate the location of the center point of the
request, which is located within the corresponding radius of
intercept and stop at each virtual corner. As shown in figul’ge gssomated See% -Ir—]hf remhamlnég thre? rgnd;)m Eumbers are
9(d), we solve the sub problem for the virtual corner wheltS€¢ to ge”efate width, length, an reso ution for the request.
Figure 11 illustrates the speed difference between BVC,

the sweeping line stops. This yields the following VC_IC_D%/C-IC and VC-IC-DS algorithms. Each data point in Figure

algorithm. . , - :
g o _ _ 11 is an average of 5 trials with different random inputs, where
VC-IC with Diagonal Sweeping (VC-IC-DS) Algorithm the same random inputs are used to test all three algorithms.
Sort Z! O(nlogn) The timing results are consistent with the theoretical analysis.

Sort virtual corners in sweeping order O(n?logn)
Sort Z! (x,,y,) for the first virtual cornerO(nlogn)

@
=]

Seconds

For each virtual cornefz,, y,,) om*| & | [ ave 0w
Update ordered st/ (z., y.) o(1) 501 ,
Get members o (x,,, y,) O(n) —oovele obrlen S
MergeZé and Zél(l'y, yv) O(n) 40 4 ——VC-C-DS  o(’) '.,//
Run the sub routine in section IV-A.1.  O(n)

End For 01
Report the maximunz(c) and the corresponding'.

20 A
Theorem 3: The Virtual Corner with Incremental Comput-

ing and Diagonal Sweeping (VC-IC-DS) approach solves the 101

problem inO(n?3) time.

20 BIO 4I0 SIO 66 76 2;0
V. RESULTS n

We have implemented the algorithms using Microsoft Visuglg. 11. Computation speed comparison between three algorithms.
C++ on a PC laptop with 1.6Ghz Pentium-M and 512MB
RAM. Figure 10 illustrates an sample output with 14 requested
frames. VI. CONCLUSIONS ANDFUTURE WORK

Random inputs are used to test speed of algorithms. TheThis paper introduces the Satellite Frame Selection problem:
random inputs are generated in two steps. First, we generateomatically finding the optimal satellite frame for a group of
four random points, which are uniformly distributed ®&,. competing request regions to maximize reward. Each requested
The four points represent locations of interests, which avéewing zone is an iso-oriented rectangle with a pair of edges
referred as seeds. For each seed, we use a random nurpbeallel to satellite orbit. The problem is to find a satellite
to generate a radius of interest. Then we generate requedtadche that maximizes the total reward. We define a new metric
viewing zones. To generate a requested viewing zone, we néadreward and provide a series of algorithms for solving the
six random numbers. One of them is used to determine whiobnlinear optimization problem.



In future work, we will consider versions of the problenj17] Sariel Har-Peled, Vladlen Koltun, Dezhen Song, and Ken Goldberg.
where the satellite has a third axis to permlt yaW motion. Efficient algorlthms for shared camera control.19th ACM SympOSIum

| hi h . | f . il l on Computational Geometry, San Diego, ,Clne 2003.
n this case the optimal frame Is not necessarily a'gnEEgS] S.A. Harrison and M.E. Price. Task scheduling for satellite based im-

with the requested viewing zones. We are also interested in agery. InThe Eighteenth Workshop of the UK Planning and Scheduling,

t | f | | 19] D. Kimber, Q. Liu, J. Foote, and L. Wilcox. Capturing and presenting
non-rectangulary, 1or example convex or concave polygors.” ghared multi-resolution video. ISPIE ITCOM 2002. Proceeding of

We will also consider extensions to cases where the solution SPIE, Bostonvolume 4862, pages 261-271, Jul. 2002.

Selecting and scheduling observations of agile satellitgrospace

produces a path planning problem, and allowjnglifferent Science and Technolog§:367—381, July 2002,
cameras produces a variant of theenter “facility location” [21] Q. Liu, D. Kimber, L. Wilcox, M. Cooper, J. Foote, and J. Boreczky.
problem. Managing a camera system to serve different video requests. In

Proceedings of IEEE International Conference on Multimedia and Expo
(ICME), Lausanne, Switzerlandolume 2, pages 13-16, Aug. 2002.
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