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Abstract— We report our development of a vision-based motion
planning system for an autonomous motorcycle designed for
desert terrain, where uniform road surface and lane markings
are not present. The motion planning is based on a vision
vector space (V2-Space), which is an unitary vector set that
represents local collision-free directions in the image coordinate
system. V2-Space is constructed by extracting the vectors based
on the similarity of adjacent pixels, which captures both the
color information and the directional information from prior
vehicle tire tracks and pedestrian footsteps. We report how V2-
Space is constructed to reduce the impact of varying lighting
conditions in outdoor environments. We also show how V2-Space
can be used to incorporate vehicle kinematic, dynamic, and time-
delay constraints in motion planning to fit the highly dynamic
requirements of the motorcycle. The combined algorithm of the
V2-Space construction and the motion planning runs in O(n)
time, where n is the number of pixels in the captured image.
Experiments show that our algorithm outputs correct robot
motion commands more than 90% of the time.

I. INTRODUCTION

Motivated by the DARPA Grand Challenge1, we are de-
veloping a vision-based motion planning system for an au-
tonomous motorcycle (Fig. 1) to run across a desert terrain
or ill-structured roads, where uniform road surface and lane
markings do not exist. Since global positioning system (GPS)
signals are not enough to guide the vehicle to avoid obstacles
and are not always available, additional sensors and decision-
making capabilities are needed. Although the single-track plat-
form (motorcycle) provides us with strong off-road capabilities
such as excellent agility and navigation on rough terrain, and
an ability to pass through narrow openings, its limited size and
power supply do not allow us to install sophisticated sensors
such as a long distance laser range finder or multiple cameras.

Because of size and power constraints, our motorcycle has
one video camera, a GPS receiver, a 3-axis gyroscope, and two
on-board computers. The vision system consists of only one
camera and one laptop PC while the other computer dedicated
to vehicle balance and low level control. Furthermore, the
highly dynamic property of the motorcycle demands very
responsive vision data processing. These constraints motivate
our research to develop a fast and robust vision-based motion
planning system for an ill-structured road.

1http://www.darpa.mil/grandchallenge/
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Fig. 1. (a) Autonomous motorcycle and (b) an ill-structured road in desert.

We report our development on vision algorithms and sys-
tems along with initial experimental results. We propose a
concept of the vision vector space (V2-Space), which is an
unitary vector set that represents local collision-free directions
using a 2D image coordinate system. V2-Space is constructed
by extracting unit vectors based on the similarity of adjacent
pixels, which includes the color information and the directional
information from prior vehicle tire tracks and pedestrian
footsteps. We report how V2-Space is constructed using a
shadow/illumination invariant color model and a maximum
variance color projection method to reduce the impact of
varying lighting conditions in outdoor environments. We also
show that how V2-Space can be used to incorporate vehicle
geometric, vehicle dynamic, and time-delay constraints in
motioning planning to fit the highly dynamic requirements
of the motorcycle. The combined algorithm of the V2-Space
construction and the motion planning runs in O(n) time, where
n is the number of pixels in the captured image. Experiments
show that it outputs correct robot motion commands more than
90% of the time.

The rest of the paper is organized as follows, we review
existing work on vision-based robot motion planning in Sec-
tion II. We propose V2-Space in section III. We present an
algorithm for V2-Space construction and motion planning in
section IV. Experiments are reported in section V and we
conclude the paper in section VI.

II. RELATED WORK

Using vision to assist mobile robots and vehicles in naviga-
tion has been a popular research field in the past decade [1],
[2]. With applications ranging from intelligent vehicles to



autonomous mobile robots, research can be classified based
on road conditions, sensing methods, and vision algorithms.

If a robot is running on a well-structured road, such as
freeways or the roads in an urban area [3], the primary focus
of research is lane detection [4] using surface and boundary
features, and road following [5], which detects road trends.
Since the road has a relatively uniform surface and clear lane
markings, techniques such as road segmentation, road edge
detection [6], and curve-fitting [7] are often used to generate
vehicle control inputs.

When a robot is running in an unstructured environment
such as a natural environment [8] or the surface of Mars [9],
terrain classification and obstacle avoidance become the pri-
mary challenges [10]. In such cases, advanced sensors such
as stereo cameras, Laser RADAR (LADAR), and appropriate
sensor fusion techniques are necessary to deal with the com-
plex environment [11]–[13]. Due to the inherent difficulties
in understanding natural objects and changing environments,
autonomous driving is still in its infancy. However, existing
results such as motion planning with 3D vision and the use of
multiple classifiers [10], [14] shed light on a different class of
problems, where roads do not disappear completely.

We discuss the motion planning problem for an autonomous
motorcycle on a so-called ill-structured road [15] that does not
have clear lane markings or pavement but might contain the
color information and the directional information from prior
vehicle tire tracks and pedestrian footsteps. Recent develop-
ments in this area are largely driven by the DARPA Grand
Challenge. The primary research problem is road identification
and obstacle detection. Although the color vision, 3D vision,
and the LADAR-based sensing can provide more information
for road identification [16]–[20], they cannot be used without
significant power and computation capability. Considering the
width limitations of the motorcycle platform and the fact that
a fast moving vehicle needs to observe the road at a far
distance, binocular stereo vision is not very effective due to
the “baseline” distance limits between the two cameras [20].
Accordingly, we decided to use monocular vision in our
system.

The primary challenge of monocular vision for ill-structured
roads arises from several aspects: 1) shadow and illumination
changes, 2) no clear road boundaries, 3) drastic changes of
road surface, and 4) little or no prior knowledge of the
roads. Motion blurring and vibration caused by a fast moving
vehicle further degrade image quality. To address these issues,
researchers approach the problem using different strategies
such as color vision [10], [16], prior knowledge [6], pixel
voting [15], classifier fusion [14], optical flow [21], neural
networks [3], and machine learning [20], [21].

Raw vision data cannot be directly used to perform motion
planning for a robot. For structured environments, high level
geometric feature representations such as points, lines, sur-
faces, and polygons can be used to abstract vision data [22],
[23]. For unstructured or ill-structured environments, com-
mon feature representations include binary maps and optical
flow [21], [24]. The optical flow is the vector field which

warps one image into another (usually very similar) image.
The vector field captures both the motion of the robot and
other moving objects based on the adjacent video frames. It
contains information about moving obstacles and the robot, but
it does not work for a still vehicle and is sensitive to motion
blurring.

Although desert roads have no clear boundaries, tire tracks
and the foot steps left by prior vehicles or pedestrians can
provide directional information for vehicle motion planning.
Broggi and Berte [4] notice that similar information is pro-
vided by lane-markings on urban roads and name it “internal
edges”. Rasmussen [15] names the directional information in
ill-structured roads as “dominating directions” and uses it to
vote for a vanishing point to guide the vehicle. However,
one pixel may have more than one dominating direction. A
road may fork or intersect with other roads. The directional
information can also be trimmed using color information.

The proposed V2-Space approach is inspired by the poten-
tial field in robot motion planning [25]. Potential field is a vir-
tual Newtonian force field that is proportional to the inverse of
the squared distance between the robot and obstacles. A point
with bigger force indicates a higher chance of collision. The
motion planning is to find the minimum force valley between
the robot position and the desired destination. We design V2-
Space using a similar vector field representation except that
vectors here are unitary and only represent local collision-free
directions. The V2-Space vectors are based on similarity of
adjacent pixels within the same frame, and therefore they do
not depend on the robot motion and contain possibly multiple
directional information. V2-Space is designed to capture and
represent the information and facilitate motion planning.

III. V2-SPACE AND PROBLEM DESCRIPTION

A pin-hole model [27] is used for modeling the on-broad
video camera. It is assumed that the camera is calibrated and
that both the camera’s intrinsic and extrinsic parameters (with
respect to the vehicle) are known. Therefore, we can determine
a perspective projection matrix M that projects a point/patch
P = [x y z 1]T in the world frame {W} to its corresponding
pixel in the image frame {I} as p = [u v 1]T

[u v 1]T = M3×4[x y z 1]T . (1)

We assume that the lens distortion of the camera is either
negligible or is compensated beforehand.

A. Inputs

Video data from a camera is the primary input for our
motion planning system. Define the pixel set of a raw video
frame F with n = l× h pixels as I = {(u, v)|1 ≤ u ≤ l, 1 ≤
v ≤ h, u, v ∈ N}, where (u, v) are pixel coordinates in {I}.
The video frame F is a matrix of RGB values

F = (F)uv = ((R,G,B))uv, (u, v) ∈ I, (2)

where R,G,B ∈ Z and 0 ≤ R,G,B ≤ 255 are integer inten-
sity values for each color channel. Another important input of
the motorcycle motion planning system is the direction angle
to the next waypoint φ obtained from GPS signals.



B. V2-Space

V2-Space is a collection of unitary vectors that describes
local collision-free directions. For frame F , its V2-Space is,

V(F) = {Θ(u, v) : collision-free directions at pixel (u, v)},
(3)

where Θ(u, v) ⊆ [0, 2π) is a set of collision-free directions at
location (u, v),⎧⎪⎨

⎪⎩
Θ(u, v) = [0, 2π), If pixel (u, v) is on the road

Θ(u, v) = ∅, If pixel (u, v) is an obstacle

Θ(u, v) ⊂ [0, 2π), If pixel (u, v) is on boundary.
(4)

Figure 2 shows an example of the defined collision-free
directions at different pixels. Since the V2-Space uses the same
pixel coordinate of the raw frame in Eq. (2), the perspective
projection relationship in Eq. (1) holds between V2-Space and
{W}.

Θ = [100◦,280◦]

Θ = [0,2π)

Θ = ∅

Fig. 2. An example of collision-free directions Θ.

C. Problem Statement

In each iteration, the motion planning system plans for the
next τ milliseconds using images F by outputting a trajectory
for subsequent intervals. The inter-iteration time τi is strictly
less than τ , which allows some overlap in the trajectories
between adjacent planning iterations. The planning interval
overlap can improve the system robustness and smoothness of
the trajectories.

The problem formulation for each planning iteration (with
the time period τi) is,

Definition 1 (Motion planning): Given F and φ, find tra-
jectory

TW (τ) = {(x(t), y(t))|t ∈ [0, τ)} (5)

for the robot, where (x(t), y(t)) is the robot position in {W}
at time t.

We propose to solve the above motion planning problem in
the image frame {I}. In the following, we first discuss how to
compute TW (τ) using the defined V2-Space and then present a
computational approach to find the optimal motorcycle motion
trajectory TW (τ).

IV. ALGORITHMS

We propose to use a computational approach for the motion
planning problem. Because the planning period τi is small, we
can approximate trajectory TW (τ) by a circular curve starting
at the current motorcycle position and tangent to the current
vehicle velocity. Using such an approximation, we can denote
the trajectory TW (τ) by a triplet (R, d, vp(t)) as

TW (τ) = {(R, d, vp(t))|R ∈ [Rmin,∞), d ∈ {0, 1}, t ∈ [0, τ)},
(6)

where R is the radius of the trajectory, d = 0 (left) or 1 (right)
for the trajectory direction with respect to the current velocity,
and Rmin is the minimal turning radius. We compute TW (τ)
given by Eq. (6) in two steps: first, we compute V2-Space
V and then we search for a trajectory in V using a set of
circular candidate curves 2. We begin with the first step of the
V2-Space construction.

A. V2-Space Construction

V2-Space construction is a non-trivial feature extraction
problem. We propose a three step V2-Space construction-
algorithm as illustrated in Figure 3.

Direction extractionSurface verification

Frame capture

AND

Color correction

V2-Space

F

Fc

Vs

V

construction

Fig. 3. V2-Space construction block diagram.

1) Color correction: The purpose of color correction is to
minimize the shadow and illumination change effects. Hue,
Saturation, and Intensity (HSI) color model has been used
widely in road identification research because it is insensitive
to illumination [27]. However, our experiments have shown
that HSI is not very effective in shadow elimination. We have
tested and compared a number of color models such as HSI,
normalized RGB, and the l1l2l3 and the c1c2c3 in [26].
Although the c1c2c3 color model is originally designed to
be shadow-invariant under the indoor lighting conditions, our
experiments show that it is the best shadow and illumination
invariant color model for outdoor vision algorithms,

c1 = arctan
(

R

max(G,B)

)
, c2 = arctan

(
G

max(R,B)

)
,

c3 = arctan
(

B

max(R,G)

)
. (7)

2We will use V to denote V2-Space V(F).



Figure 4(b) shows that the c1c2c3 color model is very
effective in shadow elimination. With the corrected color
information, our content analysis in subsequent steps becomes
significantly more robust. Let us define the output of step 1
as,

Fc = {(u, v), c1, c2, c3|(u, v) ∈ I}.

It takes O(n) time to compute Fc for an n = l × h-pixel
frame.

(d)

(a) (b)

(c)

Fig. 4. Collision-free vision space construction. (a) An original video frame
with shadow. (b) Classification of the road using shadow invariant color model
(c1, c2, c3) (c3 signature.) (c) The output of surface verification. (d) Collision-
free direction information Θ over surface pixels.

2) Surface verification: The purpose of surface verification
is to identify obstacles and other non-road regions. It outputs
a description of free space that the vehicle can pass through.
Let us define such free space as Vs, which takes the same
format as Eq. (3). The transformation from Fc to Vs is a data-
reduction process that builds on both prior knowledge and
statistic techniques.

As prior knowledge, we find that desert terrain is not com-
pletely unstructured. Vegetation can serve as a nice marking
of non-road regions. A large portion of Fc contains only
two types of surface: sandy surface and vegetated surface. A
continuously connected surface of the sandy surface is more
likely to be a road. Therefore, our first step is to find an
effective color discrimination to separate the two types of
surfaces. Since vector (c1, c2, c3) is a 3D point in color space,
our conjecture is that there should exist an unknown plane in
the color space such that the difference between the two types
of surfaces is maximized if we project (c1, c2, c3) to the plane.
The question then becomes how to find the plane.

Define (w1, w2, w3) as the unitary normal vector of the
plane. The color projection of a pixel (u, v) in Fc is the inner
product of two vectors,

cp(u, v) = w1c1 + w2c2 + w3c3, (8)

where cp(u, v) is the separation color that will be used to
classify pixels. We employ a data-driven method to estimate
(w1, w2, w3) by maximizing the variance,

(w1, w2, w3) = arg max
w1,w2,w3

V ar(cp(u, v))

s.t. w2
1 + w2

2 + w2
3 = 1

To avoid heavy computation load, (w1, w2, w3) does not need
to re-computed for each frame. It can be repeated for longer
iterations (i.e. every minute).

Now we can reduce Fc to Fp = {cp(u, v)|(u, v) ∈ I}.
We build on the appearance-based obstacle detection method
in [28] to detect obstacles and classify regions. The method
is based on the assumption that there exists a reference road
region in the image. The reference region is believed to be on
the road because it is usually the closest region in front of the
robot if the robot stays on the road. The trapezoid region (in
{I}) in Fig. 5(b) is the reference region. Using the pixels in
the reference region, we can construct a Gaussian distribution
on projected color cp(u, v). The road surface verification step
checks the pixels outside the reference region and classifies
them as road or non-road based on the confidence interval
constructed from the Gaussian distribution. If pixel (u, v) is
located in the confidence interval, then Θ(u, v) = [0, 2π);
otherwise, Θ(u, v) = ∅. Therefore, it takes O(n) to compute
the transformation from Fc to Vs. Figure 4(c) shows an
example of the surface verification output.
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Fig. 5. Appearance-based obstacle detection. (a) Reference region in {W}.
(b) The trapezoid is the reference region in {I}.

A hidden problem in the method is how to guarantee the
reference region is really on the road when the motorcycle is
running. Figure 5(a) illustrates a discrepancy dr between the
robot location and the reference region. It causes the planning
space to be ahead of the real robot location. Therefore, even if
the robot is on the road, the reference region could be outside
the road on narrow turns, which can fail the algorithm. We
will address this problem later in Section IV-B.3.

3) Direction extraction: The purpose of direction extraction
is to reduce set Vs by extracting directional information about
the road surface. Although desert roads do not have clear lane
markings like structured roads do, they do contain tracks and
footsteps left by previous vehicles or pedestrians. These tracks
and footsteps can provide useful directional information.



To extract directional information, we must search local
collision-free directions for each pixel in Vs. A straightforward
approach is to employ pixel similarity comparison as shown
in Fig. 6. Since each pixel has at most 8 neighboring pixels
(Fig. 6(b)), we divide [0, 2π) into 8 corresponding subsets. We
check each direction for pixel similarity. If the neighboring
pixel along one direction is statistically similar to pixel at
(u, v), we update Θ(u, v) accordingly along that direction.
Fig. 6(c) illustrated the output Θ(u, v) for the example.

(c)(a) (b)

u

v

Θ

Θ(u, v) =
ˆ
0, 3π

8

˜ S ˆ
11π
8

, 2π
´

Fig. 6. Directions extracted for a pixel. (a) The pixel at (u, v). (b) Simi-
larity comparison along eight neighboring directions. (c) Extracted direction
information.

To reduce noise effects, in practice we check 5 ∼ 10 pixels
along each direction. Our approach takes O(n) in this step.

B. Motion Planning in V2-Space

With the introduction of V , the motion planning problem for
the motorcycle can be quantitatively formulated. To generate
timely and accurate robot control commands, we also need
to consider many factors such as image processing delay
and motorcycle geometric, kinematic and dynamic limits. We
begin with motion planning in V2-Space without time delay
and a point robot and then consider the factors above to
form a complete motion planning solution for the autonomous
motorcycle.

1) A point robot with no time delay: Using the perspective
projection mapping P by Eq. (1), we can obtain the trajectory
TI for a set of circular arc trajectory (R,d) (bold symbols
(R,d) denotes a set of (R, d)s in {W}) as,

TI = {(u, v)|(u, v) = P(R,d),P : projection map}. (9)

We need to evaluate TI in V to obtain an obstacle-free
trajectory. Assuming TI overlaps with V at pixel (u, v), the
direction α at pixel (u, v) of the trajectory is,

α(u, v) = atan2 (Δu,Δv) , (u, v) ∈ TI .

For a pair of (R, d) ∈ (R,d), we can calculate α and then
evaluate the trajectory by checking how well it fits in V . We
define a road following quality (RFQ) function f(u, v;R, d),

f(u, v;R, d) =

⎧⎪⎨
⎪⎩

0, if Θ(u, v) = ∅
1, if α(u, v) ∈ Θ(u, v)
| cos(θd)|, otherwise,

where θd = inf
V

|α(u, v) − ∂Θ| is the minimum distance

between α(u, v) and Θ(u, v).

Therefore, we formulate the motion planning problem as an
optimization problem: looking for a trajectory that maximizes
the RFQ function,

max
TI

∑
(u,v)∈V

f(u, v;R, d). (10)

The numerical solution for Eq. (10) will not provide a com-
plete obstacle-free trajectory because along TI , f(u, v;R, d)
could be zero if one pixel (u, v) is an obstacle. Therefore, we
should impose the constraint f(u, v;R, d) > 0, t ∈ [0, τi).
The we can find a trajectory given by (R, d) which is obstacle-
free.

(R, d) = arg max
TI

∑
(u,v)∈V

f(u, v;R, d)

s.t. f(u, v;R, d) > 0 (11)

We use a set of seven circular candidate T0, . . . , T6 in
the implementation. Figure 7 illustrates arcs T0, ..., T6 in the
solution space. Candidate arcs (R,d) are defined in the world
coordinate system as illustrated in Fig. 7(a) and the projected
image in Fig. 7(b).

To choose the velocity profile vp(t) along the circular
trajectory (R, d), we have to consider several factors. First,
the motorcycle cannot run too fast for a given trajectory radius
R. If we assume the road surface can provide a constant
maximum lateral friction force, for a given turning radius R,
the maximum allowable velocity v̄ to balance the vehicle has
to satisfy v̄(R) = kf

√
R, where the constant kf is determined

by road/tire interaction properties [29]. On the other hand, we
also constrain the motorcycle velocity to be faster than its
slowest velocity v for stability requirement.

Our current approach is to choose a velocity v(τi) at time τi

and perform linear interpolation for vp(t), t ∈ [0, τi). Recall
that τi < τ is the moment that the next iteration of planning
starts. Bounded velocity v(τi) depends on the quality of road
ahead,

v(τi) = min{v +
v̄

S

∑
(u,v)∈V
t∈[τi,τ)

f(u, v;R, d), v̄}, (12)

where S =
∑

(u,v)∈V,t∈[0,τ) f(u, v;R, d). The first term in
Eq. (12) calculates the road condition beyond current planning
iteration [0, τi) to predict a weighted velocity profile. Larger
values of this term indicate better road conditions and hence
a faster speed can be achieved.

2) Incorporating GPS information: Recall that the GPS
input is a direction angle φ that points to the next way point.
We also need to evaluate each trajectory using φ. For TI , we
have its starting location (x(0), y(0)) and the location right
before the next iteration (x((τi), y(τi)). The overall direction
θτ in (0, τ) is,

θτ = atan2(x(τ) − x(0), y(τ) − y(0)).

The weight of each trajectory w(TI) is based on how much θ
and φ agree with each other,

w(TI) = cos(θτ − φ).



Therefore, we can use w(TI) as a weighted factor of the road
following function f(u, v;R, d) in Eq. (11) to calculate the
optimal trajectory.

3) Vehicle size and image processing delay: Define lr and
wr as motorcycle length and width, respectively. To guarantee
that the reference region in Fig. 5(b) is on the road, we
augment the real motorcycle by adding the reference region
with discrepancy distance dr as part of the robot geometric
model. Therefore, lr and wr are actually larger than the real
robot size.

We augment the trajectory evaluation to neighboring regions
of the candidate trajectory. Figure 7 illustrates the neighboring
region in dashed arcs. For the trajectory in Eq. (6) that starts at
(x(0), y(0)) in {W}, the upper envelope of the neighboring
region is a concentric arc that starts at (x(0) + wr/2, y(0))
with radius R + wr

2 ,

T +
W (τ) =

{(
R +

wr

2
, d

)
|starting at (x(0) +

wr

2
, y(0))

}
,

and similarly the lower envelope is

T −
W (τ) =

{(
R − wr

2
, d

)
|starting at (x(0) − wr

2
, y(0))

}
,

With T +
W (τ) and T −

W (τ), we can compute their projection T +
I

and T −
I by Eq. (9). Define TI as the pixels between T +

I and
T −

I , which is the set of pixels in the neighboring region of
TI . We can then modify Eq. (10) to incorporate the vehicle
size

max
TI

∑
(u,v)∈V

f(u, v;R, d). (13)

T0 

T1 

T2 
T3 T4 

T5 

T6 

wr /2 wr /2 

(a)

T0 

T1 

T2 
T3 T4 

T5 

T6 

wr /2 wr /2 

(b)

Fig. 7. Sample candidate arc trajectories and vehicle boundaries in (a) world
coordinate system {W} and (b) image coordinate system {I}. The solid arcs
are candidate trajectories while dashed arcs are augmented boundaries of the
vehicle that characterize the size of the vehicle and the size/location of the
reference region defined in Fig. 5. Each solid arc has two corresponding
dashed arcs.

Image capturing, processing, communication, and the robot
control all take time and these actions result a time delay.
Such a delay can be further classified as measurement delay
and decision/execution delay. Measurement delay tm refers to
the elapsed time from the moment that the camera captures a
frame to the moment that the RGB data enters computer mem-
ory. Decision/execution delay td refers to the interval between
the moment that the system takes the frame from memory to
the moment the robot actually executes the resulting control
command from the algorithm output.

Assuming t = 0 at the beginning of each iteration, motion
planning is then based on the frame captured tm time ago
and the command generated will be executed td time later.
To address such a time discrepancy, we can compensate for
the time delay by shifting the starting location of the planned
trajectory to its actual location at td. Figure 8 illustrates how
to compensate for the delay. Without loss of generality, we
assume that {W} has its origin at the center of the lower edge
of the camera field of view. Then the last known position with
respect to V is (x(−tm), y(−tm)) = (0,−dr), where dr is the
discrepancy distance illustrated in Fig. 5. Therefore, we can
estimate (x(td), y(td)) by taking velocity integrals over time
period between −tm and td. The estimated ((x(td), y(td)) is
the new starting point of trajectory TW (τ).

Fig. 8. A schematic of delay compensation.

C. Algorithm

Combining the analysis above, we have motion planning
Algorithm 1. It is clear that the overall algorithm runs in O(n)
time.

Algorithm 1: Motion planning algorithm
input : Monocular vision image and GPS information
output: Collision-free trajectory TW (τ)
Construct the collision-free vector space V
Vision processing delay compensation
Generate circular path candidates and its projection TI

for each trajectory Ti ∈ TI do
Compute the GPS weighting factor w(Ti)
Augment the robot size and compute TI

Compute the objective function
Fi =

∑
(u,v)∈V

w(Ti)f(u, v;TI)

TW (τ) = arg max
Ti∈TI

Fi

Generate velocity profile vp(t) with dynamics constraints

V. EXPERIMENTS AND RESULTS

We have implemented the algorithm on a laptop PC with a
1.6 GHz Centrino processor and 512 Mb RAM. The camera
used is a Canon VCC3 camera with a 47.5◦ horizontal field
of view. Based on Microsoft Direct X SDK version 9.0, our



algorithm can run with an input from either a live video from
the camera or pre-recorded video clips. Our algorithm can
process the video at a speed of 5 frames per second.

A. Experiments with Video Clip

The first step of the experiments is to test the algorithm
using the video data from the route of DARPA Grand Chal-
lenge. Figure 9 illustrates the algorithm using one of the
snapshots in the two hour video clip. Figure 9(a) illustrates the
results of surface verification. Black pixels represent regions
that look close to the road surface. It is clear that the data
is very noisy because the difference between the road and
its surrounding environment is not significant. However, after
directional information is extracted, the resulting V in Fig. 9(b)
is quite a good fit of the real road (we use the circular
direction to indicate the direction information at each pixel).
Even though part of the road is very bright and misclassified
as obstacles, the overall V is sufficient for motion planning.
Table I and Fig. 9(c) illustrates the result of candidate arcs
evaluation without GPS inputs. The vision algorithm ranks
three top choices including arcs 3, 4, and 5. Figure 9(d)
show how a GPS signal is used to identify the final choice.
Figure 10 uses two more examples to further illustrate how a
GPS signal can be used to improve the quality of the output
of the vision algorithm. Note that the starting points of the
arcs in all examples are calculated with considering vehicle
kinematic constraints and time-delays.
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Fig. 9. An illustration of V2-Space algorithm using a snapshot of the video
clip captured in the Mojave desert. (a) Vs, (b) V , (c) result of the arc evaluation
using Eq. (13), and (d) final choice of the arc with GPS inputs.

During the test, we found that the algorithm has a successful
classification rate of 91%. The failure cases tend to happen

TABLE I

CANDIDATE ARC EVALUATION OF ROAD FOLLOWING FUNCTIONS USING

EQ. (13) FOR THE EXAMPLES IN FIGS. 9 AND 10

Fig. 0 1 2 3 4 5 6
9 271.2 129.6 88.0 147.3 717.1 512.2 286.4

10(a) 556.7 524.0 1079.0 1303.8 1330.3 475.4 321.3
10(b) 794.4 960.7 1346.8 1031.3 922.2 1105.6 794.8

at the moment when the road surface change drastically. For
example, if part of the road is covered by water, the algorithm
cannot distinguish the water from obstacles. Another problem
is caused by the inherent limitations of monocular vision. If
the surface of the road is identical to the surface of an obstacle,
the algorithm fails because it cannot tell the difference.
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Fig. 10. Two examples using the video data from the Mojave desert.

B. Field Tests

Before we test the algorithm on a running motorcycle, we
ran it on a smaller mobile robot. The smaller robot is a three
wheel robot with two front driving wheels and one rear caster
as illustrated in Fig. 11(a). The robot is 30 cm wide and 45
cm tall and can travel at a speed of 25 cm per second with
25 lbs payload. It is also equipped with two wheel encoders
and digital compass.

(a) (b)

Fig. 11. Robots used for field tests.

We conduct experiments in a golf course, local parks, and on
the university campus. The robot can follow the road correctly



92% of the time, which is better than the video clip results
because the road conditions are less difficult than that of
the video clip. As illustrated in Fig. 11(b), the most recent
testing motorcycle is built on a 100 cc Yamaha bike. With a
customized drive-by-wire system, this vehicle can drive at a
speed of up to 60km/h. We have built three vehicles for testing.
We are currently working on testing the bike in the field and
will report more results in future versions of this paper.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we report our development of a vision-based
motion planning algorithm for an autonomous motorcycle. To
efficiently process video data and perform motion planning,
we propose V2-Space, a new framework that represents road
features and allows fast construction and motion planning.
We use a shadow and illumination invariant color model to
construct V2-Space to reduce the impact of varying lighting
conditions in an outdoor environment. We extract directional
information from prior tire tracks and pedestrian footsteps on
the road to refine our V2-Space. The V2-Space also allows
us to consider vehicle kinematic, dynamic, and time-delays
in motion planning to fit the highly dynamic requirement
of the motorcycle. We propose a V2-Space construction and
motion planning algorithm that runs linear to the number of
pixels. The algorithm is tested both with video clips from the
desert and in field experiments. It outputs correct robot motion
commands at a successful rate of more than 90%.

More experimental testing on an autonomous motorcycle
is currently under the way. In the future, we will consider
incorporating V2-Space in a stereo vision system. We will
perform partial construction of the real 3D environment in V2-
Space to allow fast computations. We will also incorporate
machine learning techniques into V2-Space to improve the
vehicle’s capability of adapting to different terrains.
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