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Abstract— Buildings consume around 40% of overall energy
in the world. Planar mirror detection problem (PMDP) arises
when surveying reflective building surface for building energy
retrofit. PMDP is also important for collision avoidance when
robots navigate close to highly reflective glassy walls. Our
approach uses two views from an on-board camera. First,
we derive geometric constraints for corresponding real-virtual
features across two views. The constraints include 1) the mirror
normal as a function of vanishing points of lines connecting
the real-virtual feature point pairs and 2) the mirror depth
in a closed form format derived from a mirror plane induced
homography. Based on the geometric constraints, we employ
a random sample consensus framework and an affine scale-
invariant feature transform to develop a robust mirror detection
algorithm. We have implemented the algorithm and tested it
under both in-lab and field settings. The algorithm has achieved
an overall detection accuracy rate of 91.0%.

I. INTRODUCTION

The fast development of service robots has advanced robot

work space from factory floors to our daily life. One impor-

tant new task is to employ robots to perform building survey

to assist building energy retrofit because buildings account

for around 40% energy usage [1]. In the survey, robots need

to recognize reflective surface to provide a proper estimation

of building thermal load. Unfortunately, highly reflective

surfaces, such as glassy building exterior and mirrored walls,

challenge almost every type of sensors. Laser range finders,

sonar arrays, and cameras are no exceptions because light

and sound signals simply bounce off the surfaces, which

become invisible to the sensors. Detecting these surfaces is

also necessary to avoid collisions in robot navigation.

We report a method for this new planar mirror detection

problem (PMDP) using two views from an on-board camera.

First, we derive geometric constraints for corresponding real-

virtual features across two views where virtual features refer

to the mirror reflection of real features. The constraints

include 1) the mirror normal as a function of vanishing points

of lines connecting the real-virtual feature point pairs and

2) the mirror depth in a closed form format derived from a

mirror plane-induced homography. We also address the issue

that popular feature detectors, such as scale-invariant feature

transform (SIFT), are not reflection invariant by combining

a secondary reflection with an affine scale-invariant feature

Y. Lu and D. Song are with the Department of Computer Science and
Engineering, Texas A&M University, College Station, TX 77843, United
States. Emails: {ylu, dzsong}@cse.tamu.edu.

H. Li is with the College of Computer Science and Technology, Civil
Aviation University of China, Tianjin 300300, P. R. China. Email: li-

haifeng666@gmail.com.

J. Liu is with the Institute of Robotics and Automatic Information
System, Nankai University, Tianjin 300071, P. R. China. Email: li-

ujt@robot.nankai.edu.cn.

transform (ASIFT). Based on the results, we employ a

random sample consensus (RANSAC) framework to develop

a robust mirror detection algorithm. We have implemented

the algorithm and tested it under both in-lab and field

settings. The algorithm has achieved an overall accuracy rate

of 91.0%.

II. RELATED WORK

PMDP is not a simple plane reconstruction problem using

3D vision. It relates to many areas including intelligence

level tests in artificial intelligence (AI) community, planar

catadioptric stereo (PCS) systems, construction of specular

surfaces, and reflection invariant feature extractions.

In AI and animal behavior communities, researchers often

assess intelligence levels based on the subject’s ability of

detecting a mirror or its own reflection [2], [3]. In the well

known mirror and mark test, a subject has a mark that cannot

be directly seen but is visible in the mirror. If the subject

increases the exploration and self-direction actions towards

the mark, it means that the subject recognizes the mirror

image as self. Existing results show that chimpanzees [3],

gorillas [4], dolphins [5], and magpies [6] have evident self-

recognition in front of mirrors except monkeys [7]. We do

not have mirror and mark tests for robots yet. It is clearly not

a trivial problem. Initial related results focus on robot self

recognition [8], [9] using motion and appearance, which is

not as difficult as recognizing a mirror when a robot cannot

see its own reflection. Such cases are not unusual because

the robot cannot see itself when approaching a mirror from

side. Our approach addresses this problem by exploring

symmetricity in the scene.

Mirror detection is also related to PCS systems in com-

puter vision. A PCS system usually consists of a static

camera and one or more planar mirrors with the aim of

achieving stereo or structure from motion (SFM) [10], [11].

Since detecting mirror pose is just a calibration problem in

PCS systems, in-lab settings and calibration patterns (e.g.

checkerboard) can be used here. However, this is not a viable

approach when robots need to detect mirror surfaces in situ.

In a way, planar mirror detection can be viewed as a

special case of specular surface construction. Existing ap-

proaches rely on active sensing by changing lighting [12],

[13] and polarity [14], [15], or assuming curvature of the

mirror [16]. These approaches have difficulty to be adapted

for robots because natural lighting can easily overwhelm the

setup. To avoid the issue, we use features from images.

SIFT [17] is well known for its invariance to image scaling

and translation, and partial invariance to affine distortion.

However, it is not reflection invariant and thus cannot be



applied to our problem. As extensions of SIFT, descriptors

invariant to mirror reflection have recently been designed

by modifying the SIFT descriptor structure at the expense

of distinctiveness, such as MI-SIFT [18] and FIND [19].

They still cannot fit our need because our feature corre-

spondence involves not only a reflection difference but also

a significant projective distortion induced by perspective

changes. On the other hand, descriptors invariant to affine

transforms can handle large perspective changes (e.g., [20],

[21]). Among these affine invariant descriptors, ASIFT [22]

shows promising performance and becomes our choice of

feature transformation. Later we will show how to make

ASIFT reflection-invariant.

In a previous work [23], our group has investigated the

problem of estimating the orientation of a mirror plane using

a single view. However, the depth information cannot be

extracted from a single view and it limits the detection

capability. We also work on survey of building exterior

surfaces [24] where we employ a multi-layer feature graph

to describe build exterior.

III. PROBLEM DEFINITION

To define our problem and focus on the most relevant

issues, we have the following assumptions.

a.1 Each view captures a real scene and its mirror reflection,

and the scene is feature-rich.

a.2 The camera calibration matrix is known to be K.

a.3 The baseline distance |t| between two views is known.

The distance is usually short and can be measured by

on-board sensors like inertial measurement unit (IMU).

If |t| is unknown, our method still applies but the depth

result is measured in ratio instead of absolute value.

We also have the following conventions in notation. Let

I and {I} be the image and the image coordinate system

(ICS) for the first view, respectively. I ′ and {I ′} are defined

similarly for the second view. The camera coordinate system

(CCS) is right-handed, with the origin C at the camera

center, and Z-axis along the principal axis. With respect to

the CCS of the first view, we define,

• πm = (nT

m, dm)T as the mirror plane where nm is a

3× 1 unit vector indicating the normal of πm, and dm
is the plane depth (i.e., the distance from C to πm),

• Xri as the i-th real 3D point and Xvi as its mirror

reflection (a virtual point),

• xri and xvi as the projections of Xri and Xvi in {I},
respectively, and

• Xri ↔ Xvi as a 3D real-virtual (R-V) pair and xri ↔
xvi as a 2D R-V pair.

In the CCS of the second view, notations differ from their

counterparts in the CCS of the first view by adding a

superscript ′, e.g. n′
m, x′

ri and x′
vi. It is worth noting that

there is a new type of correspondence between the 2D R-V

pairs in both views, which is denoted in a quadruple format:

Qi = {xri,xvi,x
′
ri,x

′
vi}.

Also, all above notations about points are represented in

homogeneous coordinates while their inhomogeneous coun-

terparts are denoted by adding a tilde on their top, e.g., x̃ri.

With assumptions and notations defined, our PMDP is,

Definition 1: Given two views I and I ′, the camera cal-

ibration matrix K and the camera translation distance |t|,
determine if there is a mirror. If so, estimate πm.

IV. MODELING

We begin with analyzing the geometric relationship be-

tween noise-free feature points. The geometric relationship

will be used in a RANSAC framework to filter noisy in-

puts later. The noise-free feature inputs here are a set of

quadruples {Qi}. The geometric relationship is constraints

on quadruples induced by 3D reflection and the imaging

process. As the result, πm will be derived as a function of

quadruples in two stages: orientation and depth. First, we

solve the mirror orientation using quadruples.

Lemma 1: Given two quadruples Qi and Qj , the mirror

normal with respect to both CCSs can be obtained as follows,

nm = K−1(xri × xvi)× (xrj × xvj),

n′
m = K−1(x′

ri × x′
vi)× (x′

rj × x′
vj), (1)

where symbol ‘×’ represents the cross product.

Proof: Consider the geometry relationship in Fig. 1.

As a convention, we define
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Fig. 1. A perspective illustration of the geometry relationship between real-
virtual pairs across two views. Note that the parallel lines are not parallel
in the illustrate because we want to bring vanishing point from infinity to
the figure.

points A and B. From the property of planar mirror reflec-

tion, we have
←−−−→
XriXvi ⊥ πm,

←−−−−→
XrjXvj ⊥ πm, and thus←−−−→

XriXvi//
←−−−−→
XrjXvj . After a projective transformation, the

projections of
←−−−→
XriXvi and

←−−−−→
XrjXvj in {I} (or {I ′}) would

intersect at a vanishing point v (or v′) in the corresponding

ICS,

(xri × xvi)× (xrj × xvj) = v

(x′
ri × x′

vi)× (x′
rj × x′

vj) = v′. (2)

On the other hand, v can be viewed as the projection of nm

in {I}
v = Knm, and similarly, v′ = Kn′

m. (3)



Combining (2) and (3), we obtain (1).

The second step is to derive mirror depth dm. From epipo-

lar geometry, we can obtain the camera rotation matrix R and

translation vector t by decomposing the essential matrix [25].

A straightforward way of computing the equation of πm is

by reconstructing 3D points via triangulation. However, we

will show a homography based method which avoids the

triangulation process.

Our method involves the homography between the corre-

sponding middle points of R-V pairs in two views. Let AB
denote the line segment defined by points A and B in the

rest of the paper. Denote the midpoint of XriXvi by Mi,

and its projection in {I} by mi (see Fig. 1 for examples).

mi can be obtained using a cross ratio which is detailed in

the following lemma:

Lemma 2: Given quadruple Qi, the projection mi of the

midpoint Mi of XriXvi is determined as follows,

m̃i = (1−a)x̃ri+ax̃vi, and a =
|xriv|

2|xriv| − |xrixvi|
, (4)

where | · | denotes the length of the line segment.

Proof: Consider the projection from
←−−−→
XriXvi to←−−→xrixvi.

A basic invariant in this projection is the cross ratio of the

four collinear points Xri, Mi, Xvi, and V,

|xrimi||xviv|
|xrixvi||miv|

=
|XriMi||XviV|
|XriXvi||MiV|

=
1

2
. (5)

Representing mi as m̃i = (1− a)x̃ri + ax̃vi, 0 ≤ a ≤ 1,
in the inhomogeneous coordinate, we have

|xrimi| = a|xrixvi|,
|miv| = |xriv| − a|xrixvi|. (6)

Substituting (6) into (5) gives the final result in (4).

We now can derive the mirror depth with mi.

Lemma 3: Given quadruple Qi and mirror normal nm,

the mirror depth is

dm = ([m′
i]×KRK−1mi)

†[m′
i]×KtnT

mK−1mi (7)

where (·)† denotes the pseudoinverse operation, and [m′
i]×

is a skew-symmetric matrix,



0 −m′
i3 m′

i2

m′
i3 0 −m′

i1

−m′
i2 m′

i1 0


 . (8)

Proof: Observe that Mi lies on the plane πm. Then

mi and m′
i must obey a homography m′

i = Hmi induced

by πm, where H can be expressed as [25]

H = K(R− 1

dm
tnT

m)K−1 (9)

H has 1 degree of freedom (DOF) since only dm is unknown.

mi and m′
i can be computed from Qi using (4). Since

m′
i = Hmi = K(R− 1

dm

tnT

m)K−1mi, we have

m′
i ×K(R− 1

dm
tnT

m)K−1mi

=[m′
i]×KRK−1mi − [m′

i]×K
1

dm
tnT

mK−1mi = 0

Then we have

[m′
i]×KRK−1midm = [m′

i]×KtnT

mK−1mi

The above system of equations is over-determined since the

rank of [m′
i]× is 2. Thus, the least-square solution of dm

is given by (7), which is also an exact solution when the

system is noise-free.

V. ALGORITHM

Section IV provides geometric relationship for noise-

free quadruples. To complete the algorithm, we need to

select correct feature transformation and verify the geometric

relationship with respect to noisy features using the well-

accepted RANSAC framework. First, let us detail the feature

selection in quadruple extraction.

A. Quadruple Extraction

To form a quadruple, we need two kinds of point corre-

spondences: cross-view correspondence, e.g. xri ↔ x′
ri, and

R-V pair correspondence, e.g. xri ↔ xvi. The former can

be handled by standard feature extraction methods such as

SIFT, since the change of camera viewpoint is usually not

too large. However, the latter is nontrivial because xri ↔ xvi

involves an improper transformation in 3D (between Xri and

Xvi).

Therefore, the key to this problem is to find features and

their correspondence under the improper transformation. We

want to convert the 3D reflection to a rigid body transfor-

mation such that existing feature extraction and matching

algorithms can be applied. Our solution is to introduce a

second mirror πs hypothetically, inspired by the fact that two

consecutive reflections lead to a rigid body transformation

regardless of the mirror configuration [10]. The simplest

scenario happens when two mirrors are placed in the same

position but facing oppositional directions. Denote the reflec-

tion of Xvi about the second mirror by Xsi. In this special

case, Xsi would be the same as Xri.

However, the projection xsi of Xsi in the image is hard

to predict if the position of πs is arbitrarily chosen. In a

previous work [23], we have found that if πs passes the

camera principal axis, then for any Xsi, its projection xsi can

be obtained by flipping xvi about an axis in the image plane.

In another words, the 3D reflection by πs effectively causes a

2D flipping for every point in the image plane. Moreover, the

2D flipping axis is even unimportant for the point matching

result as long as a 2D-rotation-invariant descriptor (e.g. SIFT

descriptor) is used. As a result, we can flip the image around

an arbitrary axis in practice.

Although image flipping allows us to find correspondences

between xri ↔ xsi instead of dealing with xri ↔ xvi

directly, it comes at a price. A new issue is that the rotation

angle θ of the rigid body motion (between Xri and Xsi) is

twice as large as the angle α between the principal axis and

πm [10] (see Fig. 2). As the value of α varies in different

situations, it can easily lead to a significant perspective

change that fails the standard SIFT algorithm.
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Fig. 2. A top-down view of the configuration of πs and πm. πs is placed
to pass the camera principal axis.

To handle this problem, we employ an affine invariant

feature extraction algorithm ASIFT which has advantages

over SIFT when dealing with large perspective changes [22].

Once a correspondence xri ↔ xsi is identified, the R-V

pair xri ↔ xvi is readily established based on the known

mapping between xvi and xsi. Algorithm 1 summarizes how

quadruples are constructed.

Algorithm 1: ASIFT-based Quadruple Extraction

Input : Two images I and I ′

Output: A set of quadruples {Qk}
1 flip I left-right (or up-down) to get If ;

2 find point matches {xri ↔ xsi} between I and If
using ASIFT;

3 map xsi in If back to xvi in I to establish R-V

correspondences {xri ↔ xvi};
4 apply steps 1-3 to I ′ to obtain {x′

rj ↔ x′
vj};

5 find cross-view matches {xrk ↔ x′
rk} from

{xri ↔ xvi} and {x′
rj ↔ x′

vj} using ASIFT;

6 construct quadruples {Qk} from {xri ↔ xvi} and

{x′
rj ↔ x′

vj} according to {xrk ↔ x′
rk};

7 return {Qk};

B. Maximum Likelihood Estimation (MLE)

To apply RANSAC framework, we need to estimate nm,

n′
m and dm using the quadruples {Qi} from the inlier set by

minimizing a cost function. Assuming measurement errors

are Gaussian, then the estimation is MLE if reprojection error

is employed as the cost function. Let us derive this metric.

For Qi, let Xi = (x̃ri, ỹri, x̃vi, ỹvi, x̃
′
ri, ỹ

′
ri, x̃

′
vi, ỹ

′
vi)

T

be a 8-vector formed by concatenating the inhomogeneous

coordinates of xri,xvi,x
′
ri and x′

vi. Given points {Xi} in the

measurement space R8, the task of estimating nm, n′
m and

dm becomes finding a variety that passes through the points

{Xi} in R8 . Because of noise, it is impossible to fit a variety

exactly. In this case, let V be the variety corresponding to

nm, n′
m and dm, and let X̂i be the closest point to Xi lying

on V .

Given nm, n′
m and dm, define

CV(X̂i) :=



(x̂ri × x̂vi)

TKnm

(x̂′
ri × x̂′

vi)
TKn′

m

m̂′
i ×Hm̂i


 ,

where H, m̂i and m̂′
i are intermediate variables computed

using (9) and (4), respectively, and x̂ri = (̂̃xri, ̂̃yri, 1)T, and

similarly for x̂vi,x̂
′
ri and x̂′

vi. Then the MLE method is to

find nm, n′
m, dm and X̂i that minimize the error function

∑

i

‖Xi − X̂i‖2Σi
, (10)

subject to CV(X̂i) = 0, ∀i, where Σi is the covariance of Xi,

and ‖ · ‖Σ represents the Mahalanobis distance.

Although minimizing the reprojection error is MLE, it

involves solving a high-dimensional non-linear optimization

problem, which is quite complex and time-consuming. To

speed up the algorithm, we derive Sampson error approxima-

tion. Instead of finding the closest point X̂i on the variety V
to the measurement Xi, the Sampson error function estimates

a first-order approximation to X̂i. For given nm, n′
m and dm,

any point Xi lying on V will satisfy CV(Xi) = 0. Then the

Sampson approximation to (10) is
∑

i ǫ
T

i (JiΣiJ
T

i )
−1ǫi where

ǫi = CV(Xi) and Ji =
∂CV

∂Xi

.

C. Applying RANSAC Framework

Algorithm 2: Robust Mirror Estimation using RANSAC

Input : Two images I and I ′

Output: Mirror plane πm or no mirror

1 obtain a set S of quadruples using Algorithm 1;

2 N =∞;

3 for k ← 1 to N do

4 randomly sample 2 quadruples from S;

5 compute n
(k)
m , n′(k)

m and d
(k)
m using (1) and (7);

6 Ik = ∅ ; // initialize inlier set

7 for Qi ∈ S do

8 Di =
√

ǫTi (JiΣiJTi )
−1ǫi;

9 if |Di| < TD then

10 Ik = Ik ∪Qi;

11 update N using (4.18) from [25] (Page 119);

12 k⋆ = argmaxk |Ik|;
13 I ⋆ = Ik⋆ ;

14 if |I ⋆| < TN then

15 return no mirror;

16 else

17 re-estimate nm, n′
m and dm with I ⋆ by

minimizing Sampson error using the

Levenberg-Marquardt algorithm;

18 (guided matching): find correspondence inliers

consistent with the optimal estimation;

19 return πm;



We are now ready to apply the RANSAC to the set

S of quadruples to estimate πm. The whole algorithm is

summarized in Algorithm 2. There are two thresholds used:

inlier-outlier threshold TD and mirror detection threshold

TN . Threshold TD in step 9 is used to determine whether

the quadruple belongs to the current inlier set. The threshold

TD is chosen based on 8 DOFs of the decision variables.

With a preset probability threshold of 0.95, TD =
√
15.51σ2

according to [25] where σ is the standard deviation of the

measurement error for feature points. The algorithm returns

“no mirror” when the maximum inlier set is smaller than TN

(Step 15). TN will be determined experimentally through in-

lab tests in Section VI-A. In step 11, the maximum sample

iteration N is chosen adaptively (Page 119 of [25]). Steps

17 and 18 of Algorithm 2 can be iterated until the number

of correspondence inliers is stable.

VI. EXPERIMENTS

We have implemented the proposed algorithm using Mat-

lab under a Windows 7 operating system. For the ASIFT

algorithm, we use the open source implementation in [26].

Images are taken by a pre-calibrated Vivicam 7020 camera

with a resolution of 640 × 480 pixels. We first test the

algorithms in our lab to determine the algorithm accuracy

under the controlled settings and to determine the proper

threshold before extensive field tests.

A. In-lab Tests

mp

|t| = 25.4 cm

a

md

(a)

View 1 (α = 25.0°)

(b)

Fig. 3. In-lab experiment setup: (a) Experiment configurations. (b) A
sample view.

Fig. 3(a) illustrates the setup of in-lab tests. Define α as the

angle between the camera optical axis and the mirror plane

πm. This is usually the robot approaching angle towards

the mirror plane. It is important to know how α affects

the estimation accuracy of πm for the collision avoidance

purpose. Data are collected in 6 different α values ranging

from 5◦ to 60◦. Scene structure is kept to be the same during

the test (see Fig. 3(b)) with abundant features. The baseline

distances between the first and second views are 25.4cm

while maintaining the same optical axis. Ground truth data

are obtained using physical measurements.

Fig. 4 illustrates that both angular errors of mirror plane

normal and relative depth errors are reasonably small under

different α values. Note that 100 trials have been carried

out for each α setting. The results are desirable because

errors are not sensitive to α values. Note that we have not
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Fig. 4. The accuracy of estimated mirror plane with respect to α values: (a)
Angular error of the mirror normal. (b) Relative depth error for the mirror
plane. The vertical bar and the middle cross represent the one standard
deviation range and sample mean, respectively.

performed experiments for cases with large angle values (i.e.

α > 60◦). At large angles, the camera/robot almost faces the

mirror directly. Since a regular camera has a horizontal field

of view larger than 55◦, the robot can see itself in the mirror.

For such cases, the problem becomes trivial because it is

reduced to self-appearance-based mirror detection, which is

less challenging.
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Fig. 5. The mean and standard deviation plot of mirror plane parameters
vs. number of quadruple inliers: (a) Angular error of the mirror normal. (b)
Relative depth error for the mirror plane. The vertical bar represents one
standard deviation range.

The second experiment is to explore the relationship

between the quadruple inlier number and the estimation

accuracy and hence determine threshold TN in Algorithm 2.

We use the same data set from the first experiment. For

every pair of images, the mirror parameters are computed

each time as the number of quadruple inliers is changed

through incrementally adjusting the ASIFT feature detection

threshold. Then we group the estimation results according to

their corresponding quadruple inlier numbers and compare

the estimation error across groups. The results are shown

in Fig. 5. As expected, the standard deviation of estimation

generally decreases as the quadruple inlier number increases.

When the quadruple inlier number drops below 6, the estima-

tion accuracy becomes untrustable due to its large standard

deviation. Hence we set TN = 6 for our field tests.

B. Field Tests

We have tested our algorithm in the field. A data set of

100 pairs of images is collected from real world scenes with

or without mirrored walls, such as gymnasiums, corridors,

campus, and shopping malls (see Fig. 6). In the data set,

50% of the image pairs contain mirrored walls such as wall

mirrors, window glasses, and water surfaces.
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Fig. 6. Sample images from the data set.

TABLE I

FIELD TEST RESULTS

Predicted
Positive Negative

Actual
Positive 45 5
Negative 4 46

The detection result is presented in a confusion matrix in

Table I, where “Positive” indicates the existence of mirrored

walls. In the confusion matrix, true positive rate and true

negative rate are both high, indicating desirable recognition

ability. The false positive cases are typically caused by

objects with strong symmetric appearances, e.g., sample

image 12 in Fig. 6. The false negative cases are mainly due to

lack of features in the scene. The overall detection accuracy

is 91.0%.

VII. CONCLUSION AND FUTURE WORK

We addressed PMDP using two views from an on-board

camera. First, we derived geometric constraints for corre-

sponding real-virtual features across two views. Based on the

geometric constraints, we employed RANSAC framework

and ASIFT to develop a robust mirror detection algorithm.

We implemented the algorithm and tested it under both in-

lab and field settings. The algorithm has achieved an overall

accuracy of 91.0%. In the future, we will study how to

segment the mirror region out of the background image.

This is important for object recognition (e.g. glassy doors

or windows).
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