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Abstract

We report a new error-aware monocular visual odometry
method that only uses vertical lines, such as vertical edges
of buildings and poles in urban areas as landmarks. Since
vertical lines are easy to extract, insensitive to lightiag-
ditions/shadows, and sensitive to robot movements on the
ground plane, they are robust features if compared with-regu
lar point features or line features. We derive a recursisaali
odometry method based on the vertical line pairs. We analyze
how errors are propagated and introduced in the continuous
odometry process by deriving the closed form represemtatio
of covariance matrix. We formulate the minimum variance
ego-motion estimation problem and present a method that
outputs weights for different vertical line pairs. The résu
ing visual odometry method is tested in physical experiment
and compared with two existing methods that are based on
point features and line features, respectively. The erpent
results show that our method outperforms its two countéspar
in robustness, accuracy, and speed. The relative erronsrof o
method are less than 2% in experiments.

Introduction

We are interested in developing a visual odometry method
for small robots in urban areas where tall buildings form a
deep valley which can block GPS signals. Existing visual
odometry methods are computationally challenging and can-
not be used on small mobile robots with limited computation
power. Employing a minimalist’s approach, we only focus
on the robot ego-motion estimation on the ground plane us-
ing vertical lines under a regular pinhole camera due to com-
mon requirements and configurations of small robots.
Building edges and poles are common features in urban
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Figure 1: Monocular visual odometry using multiple vertica
line pairs. (a) An image taken by the robot with vertical §ne

highlighted in orange. (b) A top view of the vertical edges
(black dots in the figure) in (a) and potential choices ofpair
(edges between black dots).

(@)

Utilizing the robust property of vertical lines, our new vi-
sual odometry method is error aware in landmark selection.
There are often multiple vertical lines (see Fig. 1(b)) amg a
pair of them can provide an ego-motion estimation result
with different accuracy. We analyze how errors are propa-
gated and introduced in the continuous odometry process by
deriving the recursive and closed form representation of co
variance matrix. We formulate the minimum variance ego-
motion estimation problem and present a method that out-
puts weights for different vertical line pairs. The reguii
visual odometry method is tested in physical experiments
and compared with two existing methods that are based on
point features and line features, respectively. Our reauk
performs the two counterparts in robustness, accuracy, and

areas (see Fig. 1(a)). These vertical lines are insensitive speed. The relative errors of our method are less than 2% in

to lighting conditions and shadows. They are parallel to
each other along the gravity direction. Extracting patalle

lines using the gravity direction as a reference can be done

quickly and accurately on low power computation platforms.
Moreover, vertical lines are sensitive to robot motion am th
ground plane.
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experiments.

Related Work

Visual odometry (Nister, Naroditsky, and Bergen 2006;
Maimone, Cheng, and Matthies 2007) utilizes images taken
from on-board camera(s) to estimate the robot ego-motion.
It can be viewed as a supplement when GPS signals are
challenged or not available. Visual odometry is closely
related to simultaneous localization and mapping (SLAM)
(Thrun, Burgard, and Fox 2005) and can be viewed as a
building block for visual SLAM (Davison et al. 2007,



Konolige {;md Ag_rawa_1| 2008). A better visual odometry Assumptions
method will certainly increases the performance of SLAM 1. We assume that the robot motion of the initial step is

outputs. . . . known as a reference. This is the requirement for the
_ Visual odometry can have different sensor configurations  5n6cular vision system. Otherwise the ego-motion esti-
including ommdl_rectlonal cameras ar_1d stereo vision sys-  mation is only up to similarity.

tems. Wongphati et al. propose a fast indoor SLAM method o )
using vertical lines from an omnidirectional camera (Wong- 2. We assume that the vertical lines, such as poles and build-
phati, Niparnan, and Sudsang 2009). Techniques about ver- ing vertical edges, are stationary.

tical line detection and matching are developed for omni- 3 \ye assume that the camera follows the pinhole camera

Caron and Mouaddib 2009). Nister et al. develop a visual  stortion is removed by calibration. The intrinsic param-
odometry system to estimate the motion of a stereo head or  eters of the camera are known from pre-calibration.

a single camera on a ground vehicle (Nister, Naroditsky, and o )

Bergen 2006). The stereo vision-based visual odometry on4- For simplicity, we assume the camera image planes are
the Mars rover is a well-known example (Maimone, Cheng, perpendicular to the horizontal plane, and parallel to each
and Matthies 2007). In our system, we use a regular pinhole ~ Other. If not, we can use homography matrixes (Hartley

camera due to the small form factor and low cost, whichare ~ @nd Zisserman 2004) to rotate the image planes to sat-
favorable for small robots. isfy the condition since camera orientations can be ob-

A different way of classifying visual odometry is what tained from vanishing points (Gallagher 2005) and/or po-

kind of features/landmarks are used. Point features, ssicha  t€ntiometers.
Harris corners, scale-invariant feature transformat®if () : )
points (Lowe 2004), and speed up robust feature (SURF) Notations and Coordinate Systems
points (Bay et al. 2008) are the most popular ones since |n this paper, all coordinate systems are right hand systems
they are readily available and well developed in computer (RHS). For the camera coordinate system (CCS), we define
vision literature. However, point features usually comtai  :-axis as the camera optical axis, apdxis to point upward
large amounts of noise and must be combined with filtering toward the sky. The camera optical axis is always parallel
methods such as RANdom SAmple Consensus (RANSAC) to thex — = plane which is perfectly horizontal. The cor-
(Fischler and Bolles 1981; Hartley and Zisserman 2004) to responding image coordinate system (ICS) is defined on the
find the correct correspondence across frames, which usu-image plane parallel to the — y plane of CCS with itsu-
ally results in high computation cost. On the other hand, hu- axis andv-axis parallel toz-axis andy-axis, respectively.
mans rarely view a scene as a set of isolated points while The camera principal axis intersects ICS at its origin on the
often using line features for spatial reasoning. Lines are image plane. To maintain an RHS, thexis of CCS and its
easy to extract (Gioi et al. 2008), inherently robust, and corresponding-axis in ICS must point left (see Fig. 2).
insensitive to lighting conditions or shadows. Therefore, Since the image planes are perpendicular to the hori-
many visual SLAM applications employ line features and  zontal plane, and parallel to each other, the CCSs are iso-
achieve very accurate results (Lemaire and Lacroix 2007; oriented during the computation, the robot ego-motion on
Smith, Reid, and Davison 2006; Choi, Lee, and Oh 2008).  the horizontal plane in different CCSs is equivalent to the
Vertical lines are inherently parallel to each other, which displacement of the vertical lines in a fixed CCS in the op-
can dramatically reduce the feature extraction difficulty posite direction. The: — y — 2 coordinate in Fig. 2 illus-
(Zhou and Li 2007). They are sensitive to the robot motion trates the superimposed CCSs for three consecutive frames
on the ground. These properties make vertical lines robust & — 1, k andk + 1, respectively. At timek, k& € N*, let
features for visual odometry. The number of vertical ir@s i (z(; x 1), 2.k—1))s @iy Zk) AN Cikr1)s Z(pt1)
usually substantially less than the number of feature point e the(z, z) coordinates of the intersections between the
or general lines in the scene, which leads to the reduction Corresponding vertical lineand ther — 2z p|ane for frames
of computation costs and makes it favorable for low power (. — 1, %, andk + 1, respectively. LetdZ, d7) be the ver-
platforms. In our previous work (Zhang and Song 2009), we
have shown a single pair of vertical lines can provide a min-
imal solution for estimating the robot ego-motion. Althdug
using a single vertical line pair is computationally effitie
it cannot provide the most accurate ego-motion estimation.
Hence we adopt multiple vertical line pairs.
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Problem Definition

We want to estimate the robot motion on the horizontal

plane. The robot periodically takes frames to estimate its
ego-motion. To focus on the most relevant issues, we begin
with assumptions. We share the same notation convention in Figure 2: Superimposed CC8s-y — z and ICSsu — v for
our previous work (Zhang and Song 2009). the vertical line; over frames: — 1, k andk + 1.
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tical linesi’s displacement from framk — 1 to k&, we have
dy =Tk — T(ik—1)s G = 2(ik) — Z(i,k—1)-

Thewu — v coordinate in Fig. 2 shows the corresponding
superimposed ICSs for framés— 1, £k andk + 1. Let
U(ik—1)r U(ik), andug xo1) be theu-coordinates of the
intersections between vertical lineand u-axis for frames
k —1, k, andk + 1, respectively. Led}gyk) be vertical line
i's displacement in ICS from framk — 1 to k£, we have
d?i,k) = U@k — U@k—1)- With the above notations and
coordinate systems defined, we can describe our task.

Previous Results on a Single Vertical Line Pair

In (Zhang and Song 2009), we use a pair of vertical
lines (i,7) to estimate the robot ego-motion. Defirfe
as the focal length of the camera. Given the motion of
the previous step:d, = [d¥,d;]”, we can calculate
the motion of the current stepd,1 = [df,,,df,,]"
using the positions of the vertical line pair in three
images, u; [W(i k1) Ui k), UG p+1y) T @Nd
[u(j,kflﬁ U(jk)s U(j7k+1)]T, as follows,
dig1 = F(dp,us,u5) = M Mydy,
My =
{ (Ui k1) — ugk)
flugrry = ugm)
Mpy1 =
Flugp = uir-1)  —u@rn)(Uar = var-1) |
Flugry —uGr-1)  —uGren)(Ugr = tGe-1)

In the above recursive calculation, we do not know the
true values ofdy, u; and u;. Instead, we know their
measured valued,, i; and @, with corresponding errors
ef =d; —dy, e} = 0; —u; ande? = 4; — u;. Asacon-
vention in the paper, error valyé of a variables is defined
ase* = a — a. Hence, (1) becomes

djt1 —i—efjJrl = F(dk—i—eg,ui—i—el‘-‘,uj—i—e;—‘). (2)

When errors are small, this error propagation process can
be approximated by the linearization of functibi-) with
respect taly, u; andu;, respectively. Therefore, we have

e(l:+1 = P(i,j)e(l;1 + Q(i,j)e;l + Q(j,i)e;'la 3
whereP; ;) = OF /def, Q; ;) = OF/de} andQ; ;) =
OF /0e} are Jacobian matrices based on vertical line pair
(4,7). Note thatQ, ; andQ; , are for vertical linei and
j respectively. The expressions®f; ;) andQ; ;, are pre-
sented in (4) and (5) on the next page.

1)

_u(i,k—l)(u(i,k+1) - u(i,k)) }
—U(j k—1) (U k+1) — U k)

Problem Description

Egs. (1) and (3) provide the recursive computation of the
robot ego-motion and its error propagation for a singleivert
cal line pair. However, there are often multiple verticaéls.
Forn vertical lines, there are(n — 1)/2 pairs. Each pair is
capable of providing a solution for the robot ego-motion es-
timation. We are interested in providing an estimationtstra
egy with the minimum estimation error variance.

To achieve this, we first define the ego-motion estimation
as a weighted sum of the solutions from each pair. Plug-
ging (1) in, the recursive ego-motion estimation for muéip
vertical line pairs is

n—1 n
dk+1 = Z Z w(m)F(dk,ui,uJ—),

i=1 j=i+1

(6)

wherew; ;) is the weight of vertical line paifi, j). Define

I'={1,2,...,n} asthe index set of all vertical lines; ;)'s
are standardized,

n—1 n
Yo > wap =L

i=1 j=i+1
U}(ZJ) = w(g,l) > O, 1€ I, j S I, and: 75_]

()
(8)

We want to choose a set af(; ;) to minimize the ego-
motion estimation error variance. Defili and%, | as
the covariance matrices for estimation errefsandef ;,
respectively. Defin&} as the covariance matrix for mea-
surement erroel. At time k, ¥¢ is known from the pre-
vious step. £ ; is influenced by the estimation error of
the previous ste.¢, and the newly introduced error of the
current stepxY. To measure hol§, | changes, we use its
traceo?,, = Tr(Xf, ) as a metric to measure the variance
of efl, ;. Hence our problem is defined as,

Definition 1 Givendy, u;, £¥,i € I,and £¢, derive £,
and compute

9)

{w(lj)avza] € I,l 7é j} = argg(un) 0—134»17
i,

subject to the constraintsin (7) and (8).

With w; ;y's obtained, the robot ego-motion estimation
can be obtained using (6).

Minimum Variance Ego-motion Estimation

In this section, we first derive the expressionsgf ,, then

we convert the minimization of{ , ; to a quadratic convex
optimization problem. We name this method the minimum
variance ego-motion estimation (MVEE) method.

Derive the Estimation Error Variance

We begin the modeling with derivin@gﬂ. Recall that

d i ix ofd d
¥, 1 is the variance matrix oéf;, ;. We know thatey
has two parts,

d P m
€1 = € T €1, (10)

WhereeﬁJrl is the estimation error propagated from the pre-

vious stepey!, ande}", ; is introduced from the measurement
errors of the current stegl!, : € I. From (3) and (6), we



rody ¥ ¥, g
o 1 fiu g k1) — (J( )) (ik+1)  — j&:?u(j_kﬂ)uu,kq) + d(i H)lf)uu k1) Ui, k—1)
(2.) U(j k1) — Ui k+1) dfiwukﬂ) f— g, k+1>f G, k+1)u(z o1y + (J K1) U(ik-1) ’
L (J k) ')k)
4
B dul 2,
1 i UGkAeey —( 4 “)” VUG k1) 2(0k) U(AAD) 2 k1)
Q(ivj) = U Uy Al k1) (1 k41) ’ ®)
Gok+1) — U(ik+1) X rad OV —(1+ )fZ( k) f2Gk+1)
have the expressions ef | andej?, , as, Formulate in a Convex Optimization Problem
With the closed-form o7, , derived, we can formulate the
problem defined in (9) into a convex optimization problem.
d d . g
€y = Z Z w5 P er = Rey, Let us define vectow = [wy, ..., wn(n,l)/Q]T with its a-th
i=1 j=i+1 entry obtained as follows,
. 1=1,.,n—-1,57=49+1,.
R=> > wijPus, (11) Wa = Wi, Where{ =(i—1)(n—i/2)+j—i.
i=1 j=i+1 (17)
n Vectorw is our decision vector for the optimization problem
e =2 > wiy(Qujel +Quael) =D Sel, in (9), which can be rewritten as,
=1 j=itl =1 min o2, ; = wlAw, subjectto—w < 0, cf'w=1, (18)
n w k+1
S = Z w(i, ;) Qi j)- (12) wherec = 1,,(,_1y/2x1 IS @ vector with all elements being
J=1,5#i landAisann(n —1)/2 x n(n — 1)/2 matrix from (16).

Now we detail how to obtain each entry fAr which ac-
In the above equationR andsS; are just the Jacobian matri-  tually represents the correlations between the vertical i
ces corresponding i ande?, respectively. With the error pairs. A also consists of two parts = A? + A™, whereA?
relationship, we can derive the covariance matrices. is the error propagation from the previous step, Afitis
Similar to (10), the covariance matliiingr1 of the estima- the newly introduced in the current step. Defiff¢, as the

tion errore‘,jJrl also has two parts because errors propagated (a, b)-th entry of matrixA”. Similarly, A7, is the(a, b)-th
from the previous step are independent of the measuremententry of matrixA™. AP andA™ are obtained as follows,

errors in the current step. Hence, d _ )
Ag,a:Tr(P( P P(”)) i=r,j=1I, (19)
N, = 2P+ ST, (13) AY = Ay, = Te(Pg, HEg P{ 1)), otherwise,
whereX?_, and¥y, | are corresponding e, , ande}”, ,, A7, = on(Te(Q, Qi) + Tr(Q () Q “))
respectively. ) " i=rg=1
Recall that the covariance matri{ of ef in (11) is ALy =AY, = C’uTr(Q(i,j)QSFT,z))a i=rj#l,
known from the previous step. Defiagk) as the measure- Ay = A b = criTr(Q(j,i)Q L) 1ET =1,
ment error_of Iin_e positi_om_(l-_,k). Assume that th(_ey are inde- Al =AY, = agTr(Q(j,i)QW)), j=rj#l
pendently identically distributed (i.i.d.) Gaussian witbro Am = AT =0, otherwise,
mean and a variance of . The covariance matriE” of e} " ' (20)
in (12) is a diagonal matrix;¥ = diag(o2,02,02). where
Using the covariance matrices with (11) and (12), we have i=1,..,n—1,j=i+1,....n,
n r=t,..n—1101=7,..n,
P _ pydRl mo_ 2 o a=(—1)(n—i/2)+j—1i,
5P =RI{R andsy, = o2 Z&Sz . (14) b= (r—1)n— 1) 11

Matrix A is positive definite, which can be easily proved

Thereforey) ,, and its trace;,%+1 can be obtained, by comparing (16) with (18). Since the feasible set of the
optimization problem in (18) is also convex, the problem is

a quadratic convex optimization problem, which is a well

S =3h, + 3%, =RIIRT +02> SST, (15) studied problem in operations research. Here we use the
i=1 well known interior-point method (Boyd and Vandenberghe
) der n T 2006) to solve it. With the optimized weights defined in (9)
oip1 = Tr(REZRY) Z (SS;) (16) obtained, we can estimate the robot ego-motion according to

(6). Hence we complete our MVEE method.
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Figure 3: (a) The camera and the robot used in physical exgats. (b) Experiment site 1 from the robot view with veltica
edges highlighted in green. (c,d) Experiment sites 2 and3 nebot trajectories highlighted in black.

Experiments

We compare MVEE with two popular ego-motion estima-
tion methods in physical experiments:

Nister (Nister, Naroditsky, and Bergen 2006): This
method is selected because it is a representative point
feature-based method. The method employs Harris corner
points as landmarks. This method supports both monocu-
lar and stereo configurations. We use its monocular con-
figuration in the experiments.

L&L (Lemaire and Lacroix 2007): This method is se-
lected because it is a representative line feature-based
method. The method is a monocular vision based SLAM
method using general line segments as landmarks. We
turn off the loop closing for visual odometry comparison
purpose.

Both methods estimate 3D robot movements. Since our
method is 2D, we only compare the odometry results on
thex — z ground plane. We define a relative error metric
¢ for the comparison purpose. Leéf andd} be the true
displacements of the robot it and z-directions at steg,
respectively, which are measured by a tape measure in the
experiments. The corresponding outputs of visual odometry

are defined ad? andd;, ande is defined as

Vs — Sy di)? 4+ (S di — X, di)?
2o VdR)? + (d7)?

This metric describes the ratio of the ego-motion estinmatio

error in comparison to the overall distance traveled.

We use a Sony DSC-F828 camera mounted on a robot in
the experiments (Fig. 3(a)). The camera hagahorizontal
field of view and a resolution @f40 x 480 pixels. The robot
is custom made in our lab, which measus@s< 47 x 50 cm?
in size. The visual odometry algorithms run on a Compagq
V3000 laptop PC with an 1.6GHz dual core CPU and 1.0G
RAM. We implement Nister, L&L, and MVEE on the laptop
PC using MatLab 2006a.

(21)
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Figure 4: Physical experiment results. (a) A comparison of
robot trajectories from the three methods with the ground
truth (dashed black poly line). (b) A comparisoncofalues

for the three methods at each experiment site.

e Site 2: The robot moves toward the depth direction for 51
steps with a step length of 1 m (Fig. 3(c)).

e Site 3: The robot has two trajectories as indicated by the
black solid and dashed lines, respectively. Each trajec-
tory has 31 steps along the depth direction followed by 20
steps along the lateral direction with a step length of 1 m
(Fig. 3(d)).

We run the robot for 10 trials at each site (for site 3, each
trajectory takes 5 trials) which leads to a total of 30 trails
During the experiments, we employ Gioi et al.'s method
to extract the line segments from the images (Gioi et al.
2008). The vertical lines are found using an inclinationlang
threshold (Zhou and Li 2007) and vanishing points. Then,
we employ the vanishing point method (Gallagher 2005) for
vertical and horizontal lines to construct homographias th
project images into the iso-oriented ICSs with their v
planes parallel to the vertical lines, which allows us tgmli
the ICSs at frames — 1, k, andk + 1 for stepk + 1. The

We run tests at three experiment sites (Fig. 3(b-d)) for all correspondence between lines in adjacent frames is found by
three methods. At each site, the robot moves along a planed directly matching pixels of vertical stripes at the neigtibg
trajectory for a certain number of steps. The robot takes one region of the vertical lines. Finally, MVEE is applied.
image at the end of each step. The robot displacementofthe  The experiment results of the three methods are shown in
first step is given as a reference. The details about each siterig. 4. Fig. 4(a) presents a representative sample triad-of e
are described below: timated trajectory comparison at site 1. Fig. 4(b) compares
e Site 1: The robot moves 31 steps along a zigzagging poly the mean values of for the three methods at each site. It

line with a step length of 1 m for odd steps and a step is clear that MVEE outperforms its two counterparts in esti-

length of 0.5 m for even steps (Fig. 3(b) and Fig. 4(a)). mation accuracy.



Table 1: Feature quality and computation speed comparison.

Feature Speed
Methods ; _ -
Total | Inliers | Ratio || Time | Factor
Nister 3425 245 7% 15.2s| 6.6x
L&L 122 41 34% 3.4s 1.5x
MVEE 59 25 42% 2.3s 1.0x

Table 1 compares feature quality and computation speed
for the three methods in each step. Each row in Table 1 is the
average of the 30 trials. It is obvious that the two line fea-
ture based methods, MVEE and L&L, outperform the point
feature based Nister method, which conforms to our expec-
tation. MVEE is slightly faster than L&L due to its smaller
input sets since vertical lines are a subset of general.lines
Note that all implementations are in MatLab and the speed
should be much faster if converted to C++ but the factors
should remain the same.

For feature quality, it is clear that Nister method em-
ploys much more features than MVEE and L&L, while its
inliers/total-features ratio is the lowest. On the confrar
MVEE has the least number of features with the highest in-
lier ratio. This indicates that MVEE is more robust than the
other two methods. Overall, MVEE outperforms the other
two methods in robustness, accuracy, and speed.

Conclusion and Future Work

We reported our development of a monocular visual odome-
try method that utilizes vertical lines in urban areas. We de
rived how to estimate the robot ego-motion using multiple
vertical line pairs. To improve the accuracy, we analyzed
how errors are propagated and introduced in the continu-
ous odometry process by deriving the recursive and closed
form representation of the error covariance matrix. We min-
imize the ego-motion estimation error variance by solving a
convex optimization problem. The resulting visual odome-
try method is tested in physical experiments and compared
with two existing methods, where the results show that our
method is better in robustness, accuracy, and speed.

In the future, we will extend our method to 3D visual
odometry by exploring different combinations of geometric
features such as horizontal lines, vertical planes, anatpoi
with geometric meanings (e.g. intersections between lines
and planes). We will also look into methods using texture
features in combination with geometric features.
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