
Toward Precise Robotic Weed Flaming Using a Mobile Manipulator with a

Blowtorch

Di Wang, Chengsong Hu, Shuangyu Xie, Joe Johnson, Hojun Ji, Yingtao Jiang,

Muthukumar Bagavathiannan, and Dezhen Song

Abstract— Robotic weed flaming is a new and environmen-
tally friendly approach to weed removal in the agricultural
field. Using a mobile manipulator equipped with a blowtorch,
we design a new system and algorithm to enable effective weed
flaming, which requires robotic manipulation with a soft and
deformable end effector, as the thermal coverage of the flame
is affected by dynamic or unknown environmental factors such
as gravity, wind, atmospheric pressure, fuel tank pressure, and
pose of the nozzle. System development includes overall design,
hardware integration, and software pipeline. To enable precise
weed removal, the greatest challenge is to detect and predict
dynamic flame coverage in real time before motion planning,
which is quite different from a conventional rigid gripper in
grasping or a spray gun in painting. Based on the images from
two onboard infrared cameras and the pose information of the
blowtorch nozzle on a mobile manipulator, we propose a new
dynamic flame coverage model. The flame model uses a center-
arc curve with a Gaussian cross-section model to describe the
flame coverage in real time. The experiments have demonstrated
the working system and shown that our model and algorithm
can achieve a mean average precision (mAP) of more than 76%
in the reprojected images during online prediction.

I. INTRODUCTION

Weed infestation is an important and perpetual problem in

agriculture. Weeds compete with crops for nutrients, water,

and sunlight. Manual removal of weeds is labor-intensive,

and large-scale mechanized herbicide spray has significant

adverse impacts on the environment. Robotic removal of

weeds provides a new approach to this old problem. Here,

we are interested in developing environmentally friendly

solutions to control weeds in early growth stages. More

precisely, we report our progress in developing a robotic

weed-flaming solution using a mobile manipulator equipped

with a blowtorch (see Fig. 1).

To enable precise robotic weed flaming, new system and

algorithm developments are necessary. System development

includes overall design, hardware integration, and software

pipeline. On the algorithm side, to enable precise weed

removal, the greatest challenge is to detect and predict

dynamic flame coverage in real time before motion planning.

This is quite different from a conventional rigid gripper in

grasping or a spray gun in painting because the thermal

coverage of the flame is affected by dynamic or unknown
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Fig. 1. Robotic weed flaming system design and main components.

environmental factors such as gravity, wind, atmospheric

pressure, fuel tank pressure, and pose of the nozzle. Using

the images from two onboard infrared cameras and the pose

information of the blowtorch nozzle on a mobile manipulator,

we propose a new dynamic flame coverage model. The flame

model uses a center-arc curve with a Gaussian cross-section

model to describe the flame coverage in real time.

We have implemented our system and algorithm and

performed physical experiments in the field. Our results

show that the new design of the robotic flaming system

is effective and that our flame estimation algorithm can

provide a satisfactory prediction of the flame coverage. The

experiments have shown that our model and algorithm can

achieve a mean average precision (mAP) of more than 76%

in the re-projected images in real-time prediction.

II. RELATED WORK

This paper is closely related to robotic weed control and

flame estimation.

Robotic Weed Control: While agricultural robotics

presents new challenges to researchers [1], [2], the topics

of scene perception [3]–[6], autonomous navigation [7], mo-

tion planning [8], and manipulation [9]–[11] in agricultural

environment have been extensively explored.

For robotic weed control, existing researches have covered

weed detection [3] and various control mechanisms, such as

cultivation [12], stamping [13], mowing [14], and precise

application of herbicides [6], [15]. As an alternative to

these mechanical or chemical weed control methods, weed

flaming is contact-free and has been shown to be effective on

herbicide resistant weed species while capable of preserving

plant residues to reduce water erosion and leaving no chem-

ical residues [16]. The non-selective characteristic of weed



flaming makes it applicable to various kinds of weeds, but

it also poses a challenge on precise flame control to avoid

collateral damage to the field. More specifically, flaming

should desiccate the weed with minimal disturbance to crops

or soil microorganisms [16], [17]. Studies on manual weed

flaming have explored feasibility [18], effectiveness [19],

best application conditions [16], impact of burning angles,

burner designs and shielding methods on weed flaming [20].

Due to the high labor cost and the lack of precise flame

control methods, the application of manual weed flaming is

limited. Meanwhile, robotic weed flaming has not been well

studied, which presents unique problems for us to explore.

Flame Estimation: Robotic weed flaming poses a chal-

lenge on modeling the flame as a soft end-effector in dynamic

cross-wind environment, which is unprecedented in other

robotic manipulation applications. Rigid end-effectors are

commonly used in object grasping, crop harvesting and

manufacturing [9], [21], and their behaviors can be modeled

by forward kinematics [22]. As for soft end-effectors, they

are typically modeled based on their individual physical

properties. Notable examples that use gas or liquid flows

as soft end-effectors include air levitation conveyors [23],

[24], surgical water jets [25] and herbicide/paint sprayers [6],

[26]–[28]. Similar to these soft end-effectors, the flame for

weed removal needs a model that can capture its deformation

caused by the outdoor environment and the fluctuation in gas

fuel pressure. In this paper we propose a data driven model to

estimate the flame direction and coverage without explicitly

deriving the complex physical model since it is not necessary

for our application.

The combustion process of flame has been studied ex-

tensively in the field of energy engineering. Modeling and

estimating the flame direction and coverage for weed re-

moval is closely related to the topics of flame tomography

reconstruction and flame radiation estimation.

Flame tomography reconstruction aims to recover the

flame temperature distribution using the computed tomogra-

phy technique. By observing the flame emission or absorp-

tion spectrum from multiple perspectives [29], [30], the flame

temperature distribution is reconstructed offline as volumetric

grids. Flame tomography reconstruction can achieve superior

spatial and temporal resolution by taking measurements at

regular intervals using camera/photodiode arrays [31], [32].

In [31], the authors reconstructed a 70×70×105 mm3 flame

volume at 5kHz using six cameras and two workstations

with over 200GB of RAM. Although flame tomography

reconstruction is ideal for detailed profiling of the indoor

flaming process, its complicated setup and computational

cost make it impractical in field applications.

Flame radiation estimation focuses on predicting the trans-

fer of flame energy in outdoor environments. Semi-empirical

models that capture flame characteristics, such as width

and center line length, are widely adopted to avoid the

complexity of establishing an accurate physical model of

outdoor flame radiation [33]. Wang et al. [34] proposed a

2D flame length prediction model for propane jet fires in a

crosswind environment based on the circular arc flame center

line assumption. Zhou et al. [35] presented a line source

radiation model and measured three different flame shapes

to predict the flame heat flux profile. These semi-empirical

models provide valuable insights of the flame characteristics

in outdoor environments, but their focus on large scale flame

width and center line estimation in 2D makes them unsuitable

for 3D flame coverage estimation in fields.

Building on the existing methods, we are developing a

3D flame surface model that requires measurements from as

little as two camera perspectives and can be used in real-time

field applications.

III. SYSTEM DESIGN

We begin with the overall design of the hardware system

before introducing the software diagram.

A. Hardware System

The system uses the Spot Mini™ quadruped robot from

Boston Dynamics™ as the moving platform with a light

weight 6-DoF Unitree™ Z1 manipulator/arm mounted on

the back. The arm has a payload capacity of 2kg. The

Spot and the arm are both powered by the Spot’s internal

battery, which provides 58.8V direct current (DC). A step-

down DC-DC converter is used to provide power for the arm

and on-board computer. An Intel Realsense™ D435 RGB-

D camera is mounted on the manipulator end-effector for

weed detection and localization. Two FLIR™ Lepton 3.5

thermal cameras are mounted on the end-effector and robot

body to monitor the flame direction and coverage. The arm,

thermal cameras and RGB-D camera form a hand-eye vision

system, as this configuration allows the system to obtain

observations of the weed scene and torch flame at different

angles and distances. All perception, decision-making, and

control algorithms are executed on an on-board computer

which is the Spot Core from Boston Dynamics™ . To provide

the flaming capability, a propane tank is mounted on the

Spot, and the propane gas is delivered to the torch mounted

at the tip of the arm through a torch control unit. The unit

receives control commands from the onboard computer and

turns on/off the gas flow when the torch is at the desired

actuation position. A relay-controlled lighter mounted next

to the torch is used to ignite the fuel.

Z

Y
X

Fig. 2. Illustration of the robot coordinate systems with color-coded axes.



The coordinate systems of our weed removal robot are

shown in Fig. 2. The two thermal camera frames {C}, {C ′}
and the frame of the RGB-D camera which is mounted

on the end-effector {CE} are calibrated to the manipulator

frame {M} and the end-effector frame {E} using hand-

eye calibration. The transformation between the torch nozzle

head {H} and the cameras {C ′} and {CE} is established

using the extrinsic calibration of the camera with a custom

designed checkerboard mounted on the nozzle head. The

Spot robot body frame {B} and the manipulator frame {M}
are calibrated using the hand-eye calibration results and

extrinsic camera calibration between the end effector RGB-D

camera and the robot Grayscale-D camera.
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Fig. 3. Software diagram. The software system is partitioned into two
components with the shaded blocks control Spot body motion and the rest
directs the manipulator motion for weed flaming.

B. Software Design

Fig. 3 illustrates the software pipeline for our robotic weed

flaming system. The data processing procedure begins with a

preliminary coarse localization of the weed, which uses the

weed detection model trained within the YOLOv6 framework

[36]. Subsequently, the Spot robot planning component gen-

erates a trajectory, using the Spot software development kit

(SDK), thus guiding the Spot robot from its initial state to

a position in close proximity to the identified weed. This

step ensures that the weed is within the region that allows

the manipulator to perform the flaming operation (the gray

box in Fig. 3). More details on the planning algorithm

can be found in [37]. After Spot arrives at the planned

position, we perform weed center detection using the close-

up view from the RGB-D camera. Meanwhile, the online

flame estimation is performed to estimate the temperature

thresholded flame surface for precise manipulation. As the

last step, the manipulation planning finds the state for the

flaming pose of the end effector using the combined position

of the center of the weed and the flame surface. The motion

plan of the arm is computed using the Unitree™ arm SDK.

The system is an integration of many existing develop-

ments with an important algorithmic challenge which is

online flame estimation. Unlike fixed end-effectors in other

robotic manipulation tasks, the fire-flame front is not a rigid

body, and understanding its coverage in real time determines

the success of the weed-flaming task. In the following, we

will explain how we address this problem.
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Fig. 4. (a) Illustration of flame projection. The projected thermal images
in the first and second views are shown in the short and long red boxes,
respectively. Using the center line (black dashed line), each backprojected
ray from {C} (blue dotted lines) determines a flame surface point (red stars),
while the depth ambiguity in rays from {C′} (red dotted lines) blocks the
surface point estimation. (b) Illustration of the flame center arc model. (c)
Illustration of the flame cross-section width function w(l). The red line
shows the fitted w(l) and the black dots are the measurements

IV. PROBLEM FORMULATION

The online flame coverage estimation problem takes im-

ages from two thermal cameras to estimate flame coverage.

As shown in Fig. 1, thermal camera 1 is installed in front of

the Spot body and provides a side view of the flame. Thermal

camera 2 is installed on the end effector of the arm.

A. Assumption

To allow us to focus on the key problem, we have the

following assumptions.

a.1 The flame cross-section temperature distribution is a 2D

isotropic Gaussian distribution.

a.2 The flame direction at torch head is the same as the

torch direction.

a.3 The flame radiates uniformly over its boundary surface

[38], [39].

a.4 All cameras and the manipulator have been calibrated

and hence the intrinsics of the cameras and relative

poses among frames in Fig. 2 are known.

a.5 The ambient thermal radiation is constant.

a.6 The wind is consistent in manipulation stage.

B. Nomenclature

{H} is the 3D frame of the torch nozzle head. Its origin is

at the center of the nozzle head. Its Z-axis is parallel to

the direction of the nozzle. All variables are defaulted

to {H}.

{C} is the 3D frame of the first thermal camera. Its origin is

at the camera optical center, its Z-axis coincides with

the optical axis and pointing to the forward direction of

the camera. Similarly, we define {C ′} as the 3D frame

for the second thermal camera.

x̃, x̃′ are points in the first and second views, x̃, x̃′ ∈ R
2,

respectively. The homogeneous counterparts of x̃ is

x := [x̃T 1]T ∈ P
2, and x

′ := [x̃′T 1]T ∈ P
2.



X̃ is a point in the 3D Euclidean space, X̃ ∈ R
3. Its

homogeneous counterpart is X = [X̃T 1]T ∈ P
3.

F (X) is the flame surface function, F (X) = 0 if and only

if X is on the surface.

By convention, the prime symbol ′ denotes variables in the

second thermal camera view. Let us define our problem.

C. Problem Definition

Definition 1 (Flame Estimation): Given a temperature

threshold T , thermal images I and I ′ from two different

perspectives, and the two-view camera poses C
HT and C′

H T,

estimate the temperature thresholded flame boundary surface

function F (X).

V. ALGORITHM

A. Flame Modeling

We model the flame with a center curve associated with

a circular cross-section based on the 2D isotropic Gaussian

distribution cross section temperature assumption. Let fc be

the flame center curve function such that C = {XC |fc(XC) =
0} are all the points on the curve. The flame cross-section

at point XC is a circle centered at XC and perpendicular

to the flame center curve. For an arbitrary point X, its

closest corresponding point on the center curve is X(c) =
argmin
Xi∈C

∥X − Xi∥2, where ∥ · ∥2 is the L2 norm. Based on

this flame center curve fc, the temperature thresholded flame

surface function is modeled as

F (X) = ∥X−X(c)∥2 − w(lX(c)) (1)

where w(lX(c)) is the frame cross-section width function

that encodes the radius of the cross-section boundary circle

centered at X(c), and lX(c) is the curve length from nozzle

position XH to X(c). As shown in Fig. 4(a), the distance

between X and the center curve is equal to the cross section

width (red line) only when X is a point on the cross-section

boundary circle. Therefore F (X) = 0 defines the boundary

surface of the flame.

To model the flame center curve, we extend the ap-

proximation proposed in [34] and use a 3D circular arc

representation. As shown in Fig. 4(b), because the flame

starts from the torch nozzle and its initial direction is the

same as the torch direction, the tangent direction of the

circular arc at the position of the nozzle XH is parallel to

the Z axis of the torch frame, which means that the center

of the circular arc XO must lie in the X-Y plane of the torch

frame. Intuitively, this circular arc can be represented by its

radius r, central angle α and rotation angle β along Z axis

of the torch frame. Here we use the circular arc midpoint

XM as an alternative representation for simplicity. Because

XM is a point on the arc, line XHX
(c)
M formed by XH and

the X-Y plane projection of XM must pass through XO.

The intersection of the perpendicular bisector of XHXM

and XHX
(c)
M is the arc center XO. While deriving XO from

XM resolves radius r and rotation angle β, central angle α

can be recovered from the fact that ∠XHXMX
(c)
M is equal

to α
4 . Therefore, the flame center circular arc parameters

can be fully represented by the circular arc midpoint XM .

We have α = 4asin ∥[XM ]1:2∥2

∥XM∥2
, β = atan2([XM ]2, [XM ]1)

and r = ∥XM∥2

2 / sin α
4 , where [XM ]1:2 is the first two

components of XM . Using the midpoint representation XM

also enhances the robustness during parameter estimation.

When the flame center curve approaches a straight line, the

estimated midpoint will approach the Z axis of the torch

frame, which avoids the numerical instability caused by the

circular arc radius approaching infinity.

In the following part of this section, we will show the

estimation process of the flame center circular arc and the

cross-section width function.

B. Flame Center Curve Estimation

Because the flame center arc parameter XM is estimated

from points in the thermal images, let us first introduce

the camera projection model. Based on the pinhole camera

model [40], a 3D point X and its counterpart x in the camera

image satisfy the following.

x = λK[R t]X. (2)

Here λ is a scaling factor, K is the intrinsic matrix of

the camera, R and t are the components of rotation and

translation of the transformation matrix C
HT =

[

R t

0 1

]

,

which transform from frame {H} to frame {C}. C
HT is

obtained from the forward kinematics of the manipulator and

the extrinsic calibration of the thermal cameras and the torch.

Similarly, we can define x
′, λ′, K′, R′, and t

′ for the second

view, which follow the same pinhole model described in (2).

By color thresholding the thermal image from the first

view camera, we extract the center point xc of the thresh-

olded area. This center point is a projection of the circular

arc midpoint XM , therefore they satisfy

[xc]×K[R t]XM = 0. (3)

Here [·]× is the skew-symmetric matrix. For the second view,

(3) can be rewritten by replacing xc, K, R and t with their

counterparts. The flame center arc midpoint XM is solved

from the two view stacked version of (3), AXM = 0, where

A =

[

[xc]×K[R t]
[x′

c]×K
′[R′

t
′]

]

.

Based on the estimate midpoint XM , the flame center

curve point set C is assembled with points XC derived from

the estimated midpoint XM as

XC =

[

RZ(β) XO

0 1

]









r cos a
0

r sin a
1









, a ∈ [0, α]. (4)

where RZ returns the Z-axis rotation matrix, XO =
RZ(β)[r 0 0]T, α, β and r are circle arc parameters derived

in Sec. V-A.



C. Flame Cross-Section Width Estimation

Similar to the classical 3D shape-from-silhouette 3D vol-

umetric reconstruction techniques [41], [42], we use the

thresholded boundary points in image to first estimate the

3D flame surface points, then calculate the width of their

corresponding cross-sections and use Gaussian process (GP)

regression to model the continuous cross-section width func-

tion.

Flame Surface Point Estimation: We recover the flame

surface points based on thresholded boundary points in two

views and the estimated flame center curve.

If a flame surface point projects to thresholded boundary

points in both views, it can be recovered from the back-

projected rays of these boundary points. However, due to the

pixelization error of cameras, the back-projected rays might

not intersect with each other. We set a distance threshold d to

resolve this issue, we register the closest point to both rays

as a surface point when the distance between the two rays

is less than d, which is analogous to the voxel size in the

volumetric methods. The distance between rays is also used

to identify the correspondences between the boundary points

in two views by iterating through all their combinations in

the order of their distance to the epipolar line. Let xj be

the j-th point on the thresholded boundary in the first view

image, and x
′
k be the k-th boundary point in the second

view. Based on (2), the direction vector of the back-projected

ray from xj is vj = R
T
K

−1
xj and the ray point set is

Lj = {Xj |X̃j = λvj −R
T
t;λ ∈ R}. Similarly, v′

k and L′
k

can be derived from x
′
k. Given these two back-projected rays

Lj and L′
k, their closest points to each other are X̂j , X̂

′
k =

argminXj∈Lj

X′

k∈L′

k

∥Xj − X′
k∥2. And their acute angle between

each other is θj,k = acos(|
v
T

jv
′

k

|vj ||v′

k
| |). A flame surface point

is registered to the surface point set S as

Xs =
X̂j+X̂′

k

2 ∈ S, if (∥X̂j − X̂′
k∥2 < d) ' (θj,k > θ). (5)

Here d identifies their correspondence, and θ determines the

acceptable uncertainty range of this estimation, a smaller θ
means the acceptable uncertainty range is larger.

If a flame surface point projects to thresholded boundary

points in only one view, it can be recovered from the flame

center curve and the back-projected ray of this boundary

point. Due to depth ambiguity, this surface point can be

uniquely identified only when the back-projected ray is per-

pendicular to the center curve (blue dotted line in Fig. 4(a)),

otherwise the surface points on the back-projected ray are

indistinguishable (points on red dotted line in Fig. 4(a)),

potentially leading to a wrong cross-section width estimation

(black line in Fig. 4(a)). Let the back-projected ray of the

j-th boundary point in the first view be Lj , its direction

vector is vj , and the gradient direction of the center curve

C at point X̂c is vc. The closest points between them are

X̂j , X̂c = argmin Xc∈C
Xj∈Lj

∥Xj − Xc∥2. A flame surface point

is registered to the surface point set S as

Xs = X̂j ∈ S, if vT

c vj = 0. (6)

For boundary points in the second view, their corresponding

surface points can be derived in the same way. The perpen-

dicular condition can be relaxed to acos(|
v
T

jvc

|vj ||vc|
|) > γ when

certain amount of depth ambiguity is acceptable.

Cross-Section Width Function Estimation: With the

estimated flame surface points Xs ∈ S , we first obtain

their closest point X
(c)
s to the center curve in the same

way as (1), then calculate their corresponding cross-section

widths ws = ∥Xs − X
(c)
s ∥2 and circular arc length ls =

2r asin(
∥X(c)

s −XH∥2

2r ). Using the training data, we fit the

cross-section width prediction function w(l) using GP re-

gression as

w(l) ∼ GP
(

k
T

∗ (K + σ2
NI)−1

w, k∗∗ − k
T

∗ (K + σ2
NI)−1

k∗

)

(7)

where w = [w1 . . . wN ]T are the training cross-section

widths, σN is the observation variance. Here K ∈ R
N×N ,

k∗ ∈ R
N×1 and k∗∗ ∈ R are the covariances of the training-

training, training-query, and query-query points, respectively.

Their individual component K[m,n] = cov(lm, ln), and here

cov(·, ·) is the thin-plate function [43]. Fig. 4(c) shows an

example of the fitted w(l) and the measurements.

D. Joint Optimization

With the estimated flame center curve and cross-section

width, we first evaluate the re-projected flame silhouett in

two views, then refine the estimation based on the intersec-

tion over union (IoU) cost.

Let I be the set of silhouette points in the first view

obtained through thresholding the original thermal image,

and I ′ is its counter part in the second view. The set of

re-projected silhouette points in the first view is

Ir = {xj | ∃Xj ∈ Lj , F (Xj) f 0}. (8)

And let I ′
r be its counter part in the second view. We jointly

optimized the flame center arc midpoint and the estimated

flame widths X = [XT

M w
T]T using the IoU as

max
X

|I ∩ Ir|

|I ∪ Ir|
+

|I ′ ∩ I ′
r|

|I ′ ∪ I ′
r|
. (9)

VI. EXPERIMENTS

We have constructed the system and tested the entire

system and the online flame estimation algorithm under field

conditions. First, let us show the flame estimation results.

A. Flame Estimation Validation

To validate the proposed online flame estimation algo-

rithm, we have collected a dataset with 156 pairs of im-

ages from the thermal cameras in an indoor environment

where the speed and direction of the wind can be manually

controlled. We manually classified the collected images as

being affected by light/strong wind and used the procedure

described in Sec. V estimate the circular arc flame model.

Additionally, we also estimated the flame based on a straight

line model to server as a baseline. We can not compare our

method with the conventional flame reconstruction methods
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Fig. 5. (a) and (b) show the original thermal images and the reprojected
images under light wind and strong wind, respectively. The red area is from
the circular arc model, the white area is the thresholded region and the bule
outline is from the straight line model. (c) and (d) show the corresponding
reconstructed 3D flame using the circular arc model.

[29], [31] because they require images from multiple side-

view cameras, which are not avaliable on the weed flaming

robot. The accuracy of the estimations is evaluated by the

mean average precision (mAP) of the re-projected images

of the reconstructed 3D flame model with respect to the

temperature thresholded thermal images.

TABLE I

FLAME ESTIMATION MEAN AVERAGE PRECISION

Light Wind Strong Wind Overall

Straight Line 75.8% 68.6% 71.5%
Circular Arc 79.7% 74.5% 76.6%

As shown in Tab. I, the circular arc model outperforms the

baseline straight line model in both light wind and strong

wind conditions. Fig. 5 shows the example original and

reprojected images under light/strong wind. The circular arc

model and the straight line model produce similar results

under light wind (Fig. 5(a)), but the performance of the

straight line model degrades under strong wind while the

circular arc model maintains its performance (Fig. 5(b)).

More results from the light-wind and strong-wind datasets

are shown in Fig. 6 and the multimedia attachment.

B. Weed Flaming System Validation

We conducted physical experiments on a raised bed plot

and a cotton field to validate our flaming system against

different weeds. We present quantitative results of the raised

bed plot experiment in this section and qualitative results of

the cotton field experiment in the multimedia attachment.

The experiment in the raised-bed plot focuses on quanti-

tatively testing the full system pipeline from weed detection,

robot and manipulator planning to flaming actuation. This

field is cleaned to provide a safe environment for the test.

We have conducted 5 trials in total with random initial robot

position in each trial. After the Spot robot arrives at the

planned position, the RGB-D camera images are recorded

to validate the detection-planning-actuation results. After the

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. Typical results of (a)-(e) the light wind dataset and (f)-(j) the strong
wind dataset.

(a) (b) (c)

(d) (e)

Fig. 7. Results of the rised-bed plot experiment trial 1 to 5. The green
bounding boxes show the weed center detection results and the red areas
are the re-projected hot spots captured by the thermal camera after flaming.

flaming has been completed, the thermal images are recorded

for flaming coverage evaluation. Common weeds from south-

ern Texas, such as common sunflower, giant ragweed, and

smell melon, are identified and manually transplanted to the

raised-bed plot for the experiments.

The results of the five raised-bed plot experiment trials

are shown in Fig. 7. Due to the random initial positions,

the weed positions in the images are different. The images

from all five trials capture the weeds indicates that Spot

detection-planning-actuation stage is successful and the robot

has moved to region where the weed is reachable by the

arm for the flaming action. After running the weed center

detection and online flame estimation, the end-effector is

controlled to approach the weed center with the flame tip

based on its planned pose. The hot spots after flaming are

recorded by the thermal camera and re-projected to the RGB

images for evaluation. We measure the performance of the

weed flaming system using the precision of the hot spot areas

with respect to the weed center detection bounding boxes and

the offset between the detected weed centers and the hot spot

centers. Tab. II shows the system precision and the flaming



center offset in each trial and the result is satisfactory. The

averaged precision indicates 94.4% of the flammed area are

within the detected weed bounding box, and the averaged

center offset is 6.71 cm.

TABLE II

RISED-BED PLOT EXPERIMENT RESULTS

Trial Index Precision Center Offset (cm)

1 96.7% 10.49
2 92.5% 5.72
3 100% 7.47
4 100% 2.54
5 82.6% 7.32

Avg. 94.4% 6.71

The experiment in the cotton field aims to evaluate the

performance of the weed flaming system in a real agriculture

field. The experiment setup is shown in Fig. 1, and the results

are included in the multimedia attachment.

VII. CONCLUSIONS AND FUTURE WORK

We developed a robotic weed-flaming solution using a 6

DoF manipulator mounted on a quadrupedal robot. We pre-

sented the overall design, hardware integration, and software

pipeline of the mobile manipulator system. We proposed a

flame model with an estimation method that uses a center

arc curve with a Gaussian cross-section model to describe

the flame coverage in real time. The experiments have shown

that our system and algorithm design have been successful.

In the future, we will plan the motion of the mobile

manipulator to achieve dynamic flame coverage of multiple

weeds. New weed removal techniques, such as electrocution,

can also be integrated into the robot. New algorithms will be

developed to enable the new system and improve efficiency.
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