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Autonomous Motorcycles for Agile Maneuvers, Part II: Control
Systems Design

Jingang Yi, Yizhai Zhang, and Dezhen Song

Abstract— In this paper, we present trajectory tracking and
balancing of autonomous motorcycles for agile maneuvers.
Based on the newly developed autonomous motorcycle dynamics
in the companion paper, we present a nonlinear control design.
The control systems design is based on the external/internal
convertible (EIC) dynamical structure of the motorcycle dy-
namics. The control design of the EIC systems guarantees
an exponential convergence of the motorcycle trajectory to
a neighborhood of the desired profiles while the roll motion
converges to a neighborhood of the desired equilibria that are
estimated under a given desired trajectory. The effectiveness of
the integrated control systems are demonstrated and validated
by two numerical examples based on a racing motorcycle
prototype.

I. INTRODUCTION

In our companion paper [1], we presented a new dynamic
model of autonomous motorcycles for agile maneuvers. The
new features of the dynamic model in [1] are the relaxation
of the zero lateral velocity nonholonomic constraint of the
wheel contact points and the inclusion of the tire/road
friction models. The control input variables of the motorcycle
dynamic model are the front wheel steering angle and the
angular velocities of the front and rear wheels. The objective
of this paper is to develop a simultaneous trajectory tracking
and balancing control system using the developed motorcycle
model in [1].

Control of an autonomous motorcycle only using the
steering and vehicle velocity as inputs is challenging due
to the platform’s non-minimum phase and underactuation
properties 1. For such systems, there does not exist an
analytical casual compensator for exactly output tracking
while keeping the internal stability [4]. With an extra rider
lean as an control input, it has been shown that maneuvering
a bicycle becomes easier because adding the extra control
input essentially eliminates the right half-plane zeros [5].
In [6], an autonomous bicycle is designed and balanced using
gyroscopic actuators. The controller in [6] is based on a

This work is supported in part by the National Science Foundation under
grant CMMI-0856095.

J. Yi is with the Department of Mechanical and Aerospace Engineering,
Rutgers University, Piscataway, NJ 08854 USA. E-mail: jgyi@rutgers.edu.

Y. Zhang is with the Department of Information and Communication
Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province,
P.R. China.

D. Song is with the Department of Computer Science and Engineer-
ing, Texas A&M University, College Station, TX 77843 USA. E-mail:
dzsong@cse.tamu.edu.

1An underactuated mechanical system is referred to a mechanical dy-
namic system in which the number of control inputs is less than the number
of the generalized coordinates [2]. Readers can also refer to [3] for an
overview of control of nonlinear non-minimum phase systems.

linearized bicycle model. In [7], a nonlinear control method
is designed for a trajectory tracking and balancing. In [8],
a balancing and tracking control mechanism is designed
by on-board shifting weights. In [9], [10], a simplified
inverted pendulum model is utilized for bicycle balancing.
A proportional derivative (PD) controller with a disturbance
observer is employed to balance the bicycle. The authors
however focus on balancing the bicycle on a straight-line
motion.

In this paper, we employ and extend the control design
in [7], [11]. In [7], an external/internal convertible (EIC)
dynamical system is presented and the motorcycle dynamics
are of an example of the EIC systems. A nonlinear tracking
control design is also discussed for the non-minimum phase
bicycle dynamic systems. In our previous work [11], we
have extended the dynamic models to consider motorcycle
geometric and steering mechanism properties. In [7], [11],
nonholonomic constraints of zero lateral velocity at the
rear wheel contact point are enforced and only rear wheel
friction force is considered for traction/braking forces. In our
companion paper [1], we relax the nonholonomic constraints
assumptions and consider that both wheels can produce brak-
ing actuation though the traction is only from the rear wheel.
Because of the additional control input in the new model,
the EIC model-based control design is presented in this
paper. Indeed, the control systems design takes advantages
of the control actuation flexibility and reduces the design
complexity than those in [7], [11]. Two simulation examples
demonstrate the effectiveness and efficacy of the control
systems design.

The remainder of the paper is organized as follows. In
Section II, we first review the motorcycle dynamics in [1] and
then present an EIC-based tracking and balancing control de-
sign. Simulation results are presented in Section III. Finally,
we conclude the paper and the future research directions in
Section IV.

II. CONTROL SYSTEMS DESIGN

A. Motorcycle dynamics

The motorcycle dynamics with tire models are obtained
in [1] as follows.

M(q, σ)q̈ = K(q̇, q, σ) + Bu, (1)

where state variables q̇ := [ϕ̇ vrx vry]T denote the
generalized velocity of the motorcycle, control input u :=[
ωσ uTλ

]T
, uλ =

[
λfs λrs

]T
, where ωσ is the steering

angular velocity, λfs and λrs are the front and rear tire slips,
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respectively. Matrices M, K, and B are functions of state
variables and details of these matrices and variables are given
in [1].

B. External/Internal convertible dynamical systems

The EIC form of a nonlinear dynamical system can be
viewed as a special case of the normal form.

Definition 1 ([7]): A single-input, single-output, n(=
m+ p)-dimensional time-invariant nonlinear control system
is called in an external/internal convertible form if the system
is of the form

Σ(u)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋi = xi+1, i = 1, · · · ,m− 1,

ẋm = u,

α̇i = αi+1, i = 1, · · · , p− 1,

α̇p = f(x, α) + g(x, α)u,
y = x1,

(2)
with input u ∈ R, output y ∈ R, state variables (x, α), with
x := (x1, · · · , xm) ∈ R

m and α := (α1, · · ·αp) ∈ R
p. The

coordinates (x, α) are assumed to be defined on the open
ball Br ⊂ R

n about the origin. The origin is assumed to
be an equilibrium of the system, namely, f(0, 0) = 0. The
functions f(x, α) and g(x, α) are Cn in their arguments, and
g(x, α) �= 0 for all (x, α) ∈ Br. Moreover, we refer to the
external subsystem of Σ(u) as

Σext(u)
{
ẋi = xi+1, i = 1, · · · ,m− 1,

ẋm = u,
(3)

and the internal subsystem of Σ(u) as

Σint(u)
{
α̇i = αi+1, i = 1, · · · , p− 1,

α̇p = f(x, α) + g(x, α)u.
(4)

Fig. 1 shows the structure of an EIC system. An EIC
system is convertible because under a simple state-dependent
input and an output transformation, the internal system is
converted to an external system, and the external system is
converted to an internal system (dual structure). To see such
a property, let

u = g(x, α)−1 [v − f(x, α)] (5)

define a state-dependent input transformation, u �→ v. Define
ξ = α1 as the dual output. Apply transformation (5) to the
EIC system (2) and the resulting system is referred to the
dual of Σ(u).

Σd(v)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋi = xi+1, i = 1, · · · ,m− 1,

ẋm = −g(x, α)−1f(x, α) + g(x, α)−1v,

α̇i = αi+1, i = 1, · · · , p− 1,

α̇p = v,

ξ = α1.
(6)

Thus the use of input transformation (5) and the output
assignment ξ = α1 converts the internal dynamics of Σ(u) to
the external dynamics of Σd(v), and the external dynamics
of Σ(u) to the internal dynamics of Σd(v).

x1x2xm

α1α2αp

u ∫

∫∫

∫

∫

∫ y

f(x, α)+
g(x, α)u

Int. subsystem
Ext. subsystem

Fig. 1. An external/internal convertible system.

Since the EIC form is a special normal form of nonlinear
dynamical systems, we can apply the input-output lineariza-
tion method [3], [12] to convert (1) into an EIC form. Let
B22 ∈ R

2×2, B22 ∈ R
2×2, and K2 ∈ R

2 denote the block
elements of matrices M, B, and K, respectively [1]. Using
the input transformation

uλ = B−1
22 M22

[
M−1

22 (M21ϕ̈−K2 −B21ωσ) + ua
]
, (7)

Eq. (1) becomes⎧⎨
⎩
M11ϕ̈ = K1 −M12ua +B11ωσ ,[
v̇rx
v̇ry

]
=

[
arx
ary

]
=: ua,

(8)

where ua is the controlled acceleration of point C2 in the
xyz coordinate system. We also define the controlled jerk of
point C2 and yaw acceleration as

uj :=

⎡
⎣urxury
uψ

⎤
⎦ =

⎡
⎣ȧrxȧry
ψ̈

⎤
⎦ =

[
u̇a

vrxωσ+σarx

l

]
, (9)

where we use kinematics lψ̇ = σvrx in the calculation. Let
(X,Y ) denote the coordinates of the contact point C2 and
then we have[

vX
vY

]
=

[
Ẋ

Ẏ

]
=

[
cψ − sψ
sψ cψ

] [
vrx
vry

]
.

Differentiating the above equation twice (dynamic exten-
sion), we obtain [

v̈X
v̈Y

]
= U + uJ , (10)

where

U =
[
−2v̇rx sψ −2v̇ry cψ −vrxψ̇ cψ +vryψ̇ sψ
2v̇rx cψ −2v̇ry sψ −vrxψ̇ sψ −vryψ̇ cψ

]
ψ̇

and

uJ :=
[
cψ − sψ
sψ cψ

] [
urx
ury

]
+

[
−vrx sψ −vry cψ
vrx cψ −vry sψ

]
uψ. (11)

We define the new inputs uX and uY such that

uJ = −U +
[
uX
uY

]
(12)

and then the motorcycle dynamics (8) are in the EIC form
as

Σext

{[
v̈X
v̈Y

]
=

[
uX
uY

]
, (13a)

Σint

⎧⎨
⎩
ϕ̈ = g

h

(
sϕ + blt cξ ψ̇

hvrx
cϕ

)
− 1

h

(
1 −

hψ̇
vrx

sϕ
)
ψ̇vrx cϕ− 1

h
cϕ uψy,

(13b)
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where

uψy := buψ + ary. (14)

Remark 1: When the motorcycle runs along a straightline,
σ = 0 and matrix B22 becomes singular and we cannot use
input transformation (7). In this case, we calculate the total
braking force from the second equation of the motions and
split two the front and rear wheels in a way not producing
any net moments around mass center G. A similar approach
is discussed in [13]. If the resultant total force is traction,
then it must be produced by the rear wheel.

C. Trajectory tracking control

EIC System
Controller

External
Subsystem

Internal
Subsystem

Next

⎡
⎣uext

rx

uext
ry

uint
ψ

⎤
⎦

(X,Y )

(E(t),Next, (X, Y, ϕ))

Motorcycle dynamics Σ

T
Σext : (X, Y, u)

Σint : (ϕ, X, Y, u)

Fig. 2. EIC-based approximate output tracking control of the autonomous
motorcycle dynamics.

1) Control system overview: The trajectory control system
then guides the motorcycle to follow the desired trajectory
T : (Xd(t), Yd(t)) while keeping the platform balanced and
stable. We here employ and extend the control design ap-
proach in [7]. Fig. 2 illustrates such a control scheme.

The trajectory control design consists of two steps. The
first step to design a tracking control uext of the external
subsystem Σext for the desired trajectory T . The second step
is to design a balancing controller for the internal subsystem
Σint around the internal equilibrium manifold, denoted as
E(t). The internal equilibrium manifold E(t) is an embedded
sub-manifold in the state space and dependent on the external
control uext and the external subsystem. Estimations of
internal equilibrium and its derivatives are obtained by a
dynamic inversion technique [7]. The final control system is
a combination of external and internal design and is casual.

2) Approximate tracking control: We assume that the
desired trajectory T : (Xd(t), Yd(t)) is at least C4, namely,
differentiable at least to fourth order 2. This is feasible since
the motion planning algorithm can usually generate a set of
piecewise circular curves (C∞) for T [14].

We design a controller uext to track the desired trajec-
tory (Xd(t), Yd(t)) for the external subsystem Σext (13a)

2For the external subsystem control, we only need T to be C3. The
requirement for C4 is due to the estimation of the internal (roll angle)
equilibrium and its derivatives by a dynamic inversion technique.

disregarding, for the moment, the evolution of the internal
subsystem Σint (13b).

uext :=
[
uext
X

uext
Y

]
=

[
X

(3)
d

Y
(3)
d

]
−

3∑
i=1

bi

[
X(i−1) −X

(i−1)
d

Y (i−1) − Y
(i−1)
d

]
,

(15)
where the constants bi, i = 1, 2, 3, are chosen such that the
polynomial equation s3 + b3s

2 + b2s + b1 = 0 is Hurwitz.
Under such a control, we define a nominal external vector
field Next as

Next :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẋ(t)
Ẍ(t)

X
(3)
d −

∑3
i=1 bi

(
X(i−1) −X

(i−1)
d

)
Ẏ (t)
Ÿ (t)

Y
(3)
d −

∑3
i=1 bi

(
Y (i−1) − Y

(i−1)
d

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

By external control (15) and the input transformation (12),
we find the input uext

J = −U + uext. From (11), we obtain
uext
j as [

urx
ury

]
+

[
−vry
vrx

]
uψ =

[
cψ sψ
− sψ cψ

]
uJ . (17)

Note that uJ ∈ R
2 and uj ∈ R

3 and the above equation is
underdetermined. There are many options to determine uj
from (17). Here we propose to choose uψ = ψ̈ = 0 because
such a choice significantly reduces the complexity of the
control design as shown in the following.

uext
j =

⎡
⎣uext

rx

uext
ry

uext
ψ

⎤
⎦ =

[
R(ψ)uext

J

0

]
=

[
R(ψ) (−U + uext)

0

]
.

(18)
Next, we consider the internal (roll angle) equilibrium,

denoted as ϕe, by substituting uext
ψ and uext

ry above into the
internal subsystem dynamics (13b). We define the implicit
function Fϕ of ϕ as

Fϕ :=g

(
tanϕ+

bltψ̇ cξ
hvrx

)
−

(
1 − hψ̇ sϕ

vrx

)
ψ̇vrx − uext

ψy ,

(19)

uext
ψy = buext

ψ +ary = ary , and thus the roll angle equilibrium
ϕe := ϕe(ψ̇, vrx,uext

j ) is a solution of the algebraic equation
Fϕe

= 0. We define an internal (roll angle) equilibrium
manifold E(t) as

E(t) =
{(
X(0,2), Y (0,2), ϕ(0,1)

) ∣∣ ϕ = ϕe, ϕ̇ = 0
}
.

(20)
The internal equilibrium manifold E(t) can be viewed as
a time-dependent graph over the 6-dimensional (X,Y )-
subspace in R

6 of the external subsystem (13a) that is
evolved with the external nominal vector field Next (16)
under the external subsystem control uext.

For the motorcycle balance systems, we like to control
the roll angle ϕ around E(t) while the external subsystem is
tracking T under the control of uext. Note that ϕ̇e �= 0 and
ϕ̈e �= 0 in general and here we approximate the derivatives
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ϕ̇e and ϕ̈e by using directional derivatives [3], [12] along the
vector field Next due to their dependence on the external
subsystems and uext. We define the directional derivative
(or Lie derivative) as L̄Nextϕe := LNextϕe + ∂ϕe

∂t and
L̄2

Next
ϕe := L̄NextL̄Nextϕe. With the above approximations

for ϕ̇e and ϕ̈e, the stabilizing control of the internal subsys-
tem Σint (13b) around E(t) is then given by the following
feedback linearization

uint
ψy =

(cϕ
h

)−1
[
g

h

(
sϕ +

blt cξ ψ̇
hvrx

cϕ

)
−

1
h

(
1 − hψ̇

vrx
sϕ

)
ψ̇vrx cϕ−vψy

]
, (21a)

vψy = L̄2
Next

ϕe −
2∑
i=1

ai(ϕ(i−1) − L̄i−1
Next

ϕe). (21b)

where constants a1 and a2 are chosen such that the polyno-
mial equation s2 + a2s+ a1 = 0 is Hurwitz. Therefore, the
internal control is obtained from (14) as

uint
ψ =

1
b

(
uint
ψy − ary

)
(22)

The final control system design of the motorcycle bal-
ance system (10) combines the above development in (22)
and (18) as

uj =

⎡
⎣uext

rx

uext
ry

uint
ψ

⎤
⎦ (23)

It is noted that the coupling between the external- and
internal-subsystem control designs is through the introduc-
tion of the internal equilibrium manifold E(t). By defining
E(t), we approximately decouple the external and internal
subsystems due to the EIC dual structural properties of the
motorcycle system.

We define ϑ(t) = [X(t) vX(t) v̇X(t) Y (t) vY (t) v̇Y (t)]T

as the state variables of the external subsystem and �(t) =
[ϕ(t) ϕ̇(t)]T as the state variables of the internal subsys-
tem. We also define the output ζ(t) = [X(t) Y (t)]T and
desired output ζd(t) = [Xd(t) Yd(t)]T . We assume that
the desired trajectory ζd(t) and its derivatives (up to the
fourth order) are bounded by a positive number ε > 0,
namely, ζd(t) ∈ B(4)

ε := {x(t) | ‖x(0,4)(t)‖∞ < ε}, where
‖x(0,n)(t)‖∞ := supt≥0 ‖x(0,n)(t)‖∞. We also define the

tracking errors eϑi = ϑi − X
(i−1)
d , eϑi+3 = ϑi+3 − Y

(i−1)
d ,

i = 1, 2, 3, eϕj = ϕ(j) − ϕ
(j)
e , j = 0, 1, and e :=

[eϑ1 , · · · , eϑ6 , e
ϕ
1 , e

ϕ
2 ]T . We also define the perturbation

error pϕ (= O(‖ζ(0,4)
d (t)‖,‖e‖) as the approximation errors

by using the directional derivatives for ϕ̇e and ϕ̈e in the
internal subsystem control design (21b), namely,

pϕ = L̄2
Next

ϕe − ϕ̈e +
2∑
i=1

ai(ϕ(i−1)
e − L̄i−1

Next
ϕe).

We similarly define another two perturbation errors pX
(= O(‖ζ(0,4)

d (t)‖,‖e‖) and pY (= O(‖ζ(0,4)
d (t)‖,‖e‖) due

to the resulting errors in the external subsystem state ϑ(t)
using the internal subsystem control uint

ψy in the external

subsystem (23). An explicit formulation for pX and pY can
be similarly found by the dual structure of EIC system [7].
We consider the perturbation vector for the error dynamics
of Σ(u) (12) under control (23) as

p(ζ(0,4)
d (t),e) = [0, 0, pX , 0, 0, pY , 0, pϕ]T .

We assume an affine perturbation for p(y(0,4)
d (t), e), namely,

there exist constants k1 > 0 and k2 > 0 such that
‖p(ζ(0,5)

d (t),e)‖∞ ≤ k1ε+ k2‖e‖∞.
We only state the convergence properties of the approx-

imate tracking control design in this section. The proof of
these properties follows directly from Proposition 6.7.4 and
Theorem 6.7.6 in [7] and we omit here.

Theorem 1: For the balance system (12), assuming that
the desired trajectory ζd(t) ∈ B(4)

ε for some ε > 0 and if the
affine perturbation constant k2 > 0 is a sufficiently small real
number, then there exists a t1 > 0, and a class-K function
r(ε) such that for all (eϑ(0),eϕ(0)) ∈ Br(ε), (eϑ(t),eϕ(t))
converges to zero exponentially until (eϑ(t),eϕ(t)) enters
Br(ε). Once (eϑ(t),eϕ(t)) enters Br(ε), it will stay in Br(ε)

thereafter.
3) Estimation of the internal equilibrium: A dynamic

inversion technique approach in [7] is used to estimate
the internal equilibrium state ϕe in (21b). To illustrate the
dynamic inversion technique, we differentiate Fϕ = 0 with
time, and using the fact that uext

ψ = ψ̈ = 0 we obtain

ϕ̇e =
1

g sec2 ϕe + hψ̇ cϕe

(
gblt cξ ψ̇v̇rx

hv2
rx

+ ψ̇v̇rx + uext
ry

)

=: E(ϕe, ψ̇, vrx, v̇rx, uext
ry ). (24)

A dynamic inverter for an estimate ϕ̂e of the internal
equilibrium ϕe is designed as

˙̂ϕe = −βFϕ̂ + E(ϕ̂e, ψ̇, vrx, v̇rx, uext
ry ), (25)

where Fϕ̂e
is given by (19) and β > 0 is the inverter

gain. The proof of the exponential convergence of the es-
timation (25) follows directly from the development of the
dynamic inversion technique in [7].

The estimate of the directional derivative L̄Nextϕe
in (21b) is obtained by (25), namely, L̄Nextϕe =
E(ϕe, ψ̇, vrx, v̇rx, uext

ry ). The estimate of L̄2
Next

ϕe is obtained
by directly taking one more directional derivative of L̄Nextϕe
along Next. For brevity, we give the derivation in Appendix.
We also list the calculation of L̄Nextu

ext
rx and L̄Nextu

ext
ry

in Appendix. Such calculations are needed for computing
L̄2

Next
ϕe. The approximation errors in estimating ϕe (by

ϕ̂e) and its directional derivatives L̄Nextϕe and L̄2
Next

ϕe (by
L̄Next ϕ̂e and L̄2

Next
ϕ̂e, respectively) can be considered as ad-

ditional terms in the perturbation p(ζ(0,4)
d (t),e). Therefore,

the stability results of the approximate control design in the
previous section are still held.

Remark 2: Although the above control system design is
similar to those in [7], the final form is much simpler
because we have chosen uext

ψ = 0 in (18). We have such
a flexibility by (17) to determine uj because we have three
control input variables now while in [7] only the rear wheel
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Fig. 3. A general trajectory tracking. (a) Trajectory positions. (b) Tracking position error. (c) Rear wheel contact point velocity magnitude.
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Fig. 4. Roll angle and steering angle of the general trajectory tracking. (a) Rear wheel contact point body-frame velocities vrx and vry . (b) Roll angle
ϕ. (b) Steering angle φ.

driving torque and the steering angle are controlled. Because
of this difference, we only require the trajectory T is at
least C4 rather than C5 as the requirement of the controller
in [7]. Using optimization techniques by considering the
input constraints for determining uj by (17) is an extension
of the control design and currently ongoing research.

III. SIMULATION RESULTS

In this section, we demonstrate the control systems design
through two numerical examples. The first example is taken
from [11] for showing a general motorcycle trajectory and
the second example to illustrate an aggressive maneuvers
with a large side slip angles.

We use a racing motorcycle prototype in [15], [16] as
the controlled motorcycle in our simulation. The motorcycle
parameters are listed in Table I. We use the tire 160/70 in [15]
for the racing motorcycle since the testing data are available
in the paper. The tire stiffness coefficients listed in Table I
are calculated under the nominal load Fz = 1600 N.

Fig. 3 shows the trajectory tracking performance of a
general trajectory. The position errors under the control
system in Fig. 3(b) are within 1 meter with the center line of
the track throughout the entire course. The desired velocity
in Fig. 3(c) is determined by the curvature of the trajectory.
In Fig. 4, we have shown the roll angle ϕ, the body-frame
velocities vrx and vry of rear wheel contact point C2, and
steering angle φ. From Fig. 4(a) we clearly see that the lateral
velocity vry is quite small most time because the motorcycle
is running along a straight-line in most time. At turning

locations, the longitudinal velocity is reduced and the lateral
velocity increases. The roll angle and steering angle are small
for such a small-curvature trajectory.

Fig. 5 shows the longitudinal slips and side slip angles
of the front and rear wheels. Again, it is clear that the slip
values at both wheels are small. The front wheel only brakes
and the rear wheel generates traction or braking forces. For
example, when the motorcycle accelerates around 120 s, the
rear wheel slip has a large negative spike to produce the
traction force. When the vehicle needs to reduce velocity,
both wheels brake with a set of large positive slip spikes
shown in Fig. 5(a). The side slip angles shown in Fig. 5(b)
clearly illustrate that at large-curvature locations, the side
slip angles are large to produce the lateral forces to turn the
motorcycle. Typically, the rear side slip angles are small and
close to zero.

The second example shows that the motorcycle runs under
a more aggressive maneuver. The desired trajectory is “8”-
shape with circular radius of 25 meters; see Fig. 6(a). In
Fig. 6(a), the motorcycle starts from the origin and moves
along the direction indicated by the arrows in the figure.
The desired velocity of the motorcycle moving along the
“8”-shape trajectory is designed to be varying significantly
as shown in Fig. 6(c). Comparing with the previous example,
the tracking errors of the “8”-shape trajectory are much
larger; see Fig. 6(b). This is mainly due to the quick change
of the desired velocity profile.

Fig. 7 shows the body-frame velocity, roll angle, and
steering angle for the “8”-shape trajectory. We clearly see
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TABLE I

MOTORCYCLE PARAMETERS

m (kg) b (m) l (m) lt (m) h (m) ξ (deg) r (m) λsm λγm (deg) μm kλ (N) kϕ (N/rad) kγ (N)

274.2 0.81 1.37 0.15 0.62 26.1 0.3 0.1 6 3 41504 23968 1227
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Fig. 6. An “8”-shape trajectory tracking. (a) Trajectory positions. (b) Tracking position error. (c) Rear wheel contact point velocity magnitude.
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Fig. 5. Longitudinal slips and slip angles at the front and rear wheels. (a)
Slip ratio λfs and λrs. (b) Slip angles γf and γr .

the change of the lateral velocity during each circle of the
“8”-shape trajectory. The lateral velocity magnitude is large

due to the smaller turning radius. The maximum roll angle
is around 15 deg and that is much larger than that of the
previous example. The steering angle is large as well to
make the motorcycle turn in a tighter and small circle. The
oscillations in both roll angle (Fig. 7(b)) and steering angle
(Fig. 7(c)) are probably due to the variations in the desired
velocity.

We clearly see a large side slip angles shown in Fig. 8(b).
Particularly, for the front wheel, we have seen a 15 degree
side slip angle. For the rear wheel, the side slip angle reaches
almost 6 degrees, which is around the saturation point of the
tire characteristics (Table I). In other words, the motorcycle
rear wheel is starting to slide on the ground. If the side slip
angle increases further, the stability of the motorcycle will
change significantly. The longitudinal slip are relatively small
since the longitudinal acceleration of the motorcycle is not
large and the racing motorcycle tire is stiff. This simulation
example demonstrates that the proposed dynamic model and
control systems capture the realistic aggressive motorcycle
maneuvers.

IV. CONCLUSION

The focus of this second-part paper is on the control sys-
tems design of autonomous motorcycles for agile maneuvers.
The nonlinear control design presented in this paper take
advantages of the external/internal convertible (EIC) dynam-
ical structure of the motorcycle dynamics, and extend to the
three control inputs case. Such an extension allows some
flexibility in control systems design and therefore simplifies
the complexity of the final calculation. We have demonstrated
the control systems design through two simulation examples
using a racing motorcycle prototype.
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Fig. 7. Roll angle and steering angle of the “8”-shape trajectory tracking. (a) Rear wheel contact point body-frame velocities vrx and vry . (b) Roll angle
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There are several ongoing research directions. We are
currently implementing the proposed control systems on a
Rutgers autonomous motorcycle platform. We will report
the implementation results in the near future. Moreover, we
also plan to study how the professional racing drivers control
motorcycles for agile maneuvers.
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L̄Nextu
ext
rx =

[
− sψ cψ

]
ψ̇
(
−U + uext

)
+

[
cψ sψ

]
(
−

⎡
⎣−2uext

rx sψ −2uext
ry cψ −3v̇rxψ̇ cψ +3v̇ryψ̇ sψ +ψ̈ (vrx sψ +vry cψ)

2uext
rx cψ −2uext

ry sψ −3v̇rxψ̇ sψ −3v̇ryψ̇ cψ −ψ̈ (vrx cψ −vry sψ)

⎤
⎦ ψ̇ +

⎡
⎣L̄Nextu

ext
X

L̄Nextu
ext
Y

⎤
⎦
)

= v̇rxψ̇
2 +

(
2uext

ry − uext
X sψ +uext

Y cψ
)
ψ̇ + L̄Nextu

ext
X cψ +L̄Nextu

ext
Y sψ, (26)

L̄Nextu
ext
ry = v̇ryψ̇

2 −
(
2uext

rx + uext
X cψ +uext

Y sψ
)
ψ̇ − L̄Nextu

ext
X sψ +L̄Nextu

ext
Y cψ . (27)

APPENDIX

The calculation of L̄Nextu
ext
rx and L̄Nextu

ext
ry is obtained by

taking the Lie derivative along the nominal external vector
field (16) and the control input (18). The calculation are
shown in (26) and (27) on the top of this page. In these
equations, we have⎡

⎣L̄Nextu
ext
X

L̄Nextu
ext
Y

⎤
⎦ =

⎡
⎣X(4)

d (t)

Y
(4)
d (t)

⎤
⎦− b3

⎡
⎣uext

X −X
(3)
d (t)

uext
Y − Y

(3)
d (t)

⎤
⎦−

2∑
i=1

bi

⎡
⎣X(i) −X

(i)
d (t)

Y (i) − Y
(i)
d (t)

⎤
⎦ .

Similarly, we can calculate L̄2
Nextϕe by directly taking a

directional derivative of L̄Nextϕe along the vector field Next.
From (24), we have

L̄2
Next

ϕe =
(
hψ̇ cϕe

+g sec2 ϕe

)−1
[
gblt cξ
h

(
ψ̇uext

rx

v2
rx

−

2v̇2
rxψ̇

v3
rx

)
+ ψ̇uext

rx + L̄Nextu
ext
ry +

(
hψ̇ sϕe

−

2g sec2 ϕe tanϕe
) (
L̄Nextϕe

)2

]
. (28)
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