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Abstract— We report our algorithmic development on the
2-frame problem that addresses the need of coordinating two
networked robotic pan-tilt-zoom (PTZ) cameras forn, (n > 2),
competing rectangular observation requests. We assume the
two camera frames have no overlap on their coverage. A
request is satisfied only if it is fully covered by a camera
frame. The satisfaction level for a given request is quantified
by comparing its desirable observation resolution with that
of the camera frame which fully covers it. We propose a
series of exact algorithms for the solution that maximizes the
overall satisfaction. Our algorithms solve the 2-frame problem
in O(n2), O(n2m) and O(n3) times for fixed, m discrete
and continuous camera resolution levels, respectively. Wehave
implemented all the algorithms and compared them with the
existing work.

I. I NTRODUCTION

Networked Robotic pan-tilt-zoom (PTZ) cameras can
cover a large region of remote scene with high resolution
without requiring excessive network communication band-
width. Consider a set ofp (p ≥ 2) networked PTZ cameras
in a large shopping mall for public surveillance, or in a
deep forest for natural observation. There aren different
rectangular observation requests proposed by multiple online
users or initiated byin situ sensors. With usually much more
competing requests than PTZ cameras available, an optimal
set of p PTZ camera frames that best satisfies the requests
needs to be computed. This is formulated as thep-frame
problem in our previous work [1]. Fig. 1 illustrates a 2-frame
problem instance.

II. RELATED WORK

The p-frame problem relates to thep-center problem and
multiple camera surveillance.

The p-frame problem is structurally similar to thep-
center facility location problem. Givenn request points
in Rd, (d = 1, 2, ...), the task is to optimally allocatep
points as service centers to minimize the maximum distance
between points and their nearest service centers. The distance
metric are usually Euclidean(l2) or rectilinear(l∞). The
Euclideanp-center problem is NP-hard [2]. Eppstein [3]
proposes anO(n log2 n) algorithm for the Euclidean 2-center
problem. The rectilinearp-center problem is also NP-hard
[2]. Bespamyatnikh and Kirkpatrick [4] propose a linear time
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Fig. 1. An illustration of the non-overlapping 2-frame problem.

algorithm for the rectilinear 2-center problem. The requests
in these problems are all points instead of polygonal regions
as those in thep-frame problem. The objective of thep-
frame problem is to maximize the satisfaction, which is not
a distance metric.

The p-frame problem can be applied to multiple camera
surveillance systems, especially those with multiple active
cameras. Fiore et al. [5] propose a dual-camera system with
a wide-angle static camera and a PTZ camera for pedestrian
surveillance. While the wide-angle static camera monitors
the scene and detects pre-defined individual human activities
(e.g., loitering), the PTZ camera takes high-resolution images
of the human for close-up observation. El-Alfy et al. [6]
model the subject-camera assignment issue for a PTZ camera
network as a maximum matching problem in a bipartite graph
and group the subjects using heuristics when there are less
camera than subjects. Different from these existing work,
the solution to thep-frame problem can be applied to opti-
mally control PTZ camera parameters such that the camera
coverage-resolution tradeoff is achieved by maximizing the
satisfaction level of the observation to all objects.

Our group has been researching on developing intelligent
vision systems and algorithms using robotic cameras for a
variety of applications [7]. In [1], we formulate thep-frame
problem and propose an approximation algorithm that runs in
O(n/ǫ3 + p2/ǫ6) time. An autonomous observation system
that adopts this algorithm with multiple PTZ cameras has
been introduced in [8]. However, the computation time of the
algorithm is very sensitive to the approximation boundǫ. It
proves to be inviable for problems where exact or accurate
solutions are required. In this paper, we extend the single
frame selection algorithm in [9] to the cases wherep = 2
and propose a series of exact algorithms for the 2-frame
problem with different camera configurations.

III. PROBLEM DEFINITION

A. Input and Output

As illustrated in Fig. 1, we assume all camera frames and
requests are rectangular and each side of the rectangle is axis-



parallel. Thei-th request is defined asri = [xi, yi, xi, yi, zi],
where (xi, yi) and (xi, yi) denote the bottom-left and top-
right corners of the rectangular requested region, respec-
tively; zi ∈ Z specifies the desired resolution level, which
indicates that each pixel in image corresponds to azi × zi
square area in the scene, andZ is the set of all possible
resolution levels. Therefore, biggerz ∈ Z indicates bigger
camera frame coverage and thus can be interpreted as the
reciprocal of the conventional concept of resolution. When
the PTZ cameras have a fixed resolution level,Z = {z0},
where z0 is a constant; When cameras havem discrete
resolution levels,Z = {z1, z2, ..., zm}; Cameras can also
have continuous resolution rangeZ = [z, z], wherez andz
denote the lower and upper bounds of the resolution level,
respectively. The input of the 2-frame problem is a set of
n requestsR = {ri|i = 1, 2, ..., n}. We define the request
index set asP = {1, 2, ..., n}.

A solution to the 2-frame problem consists of two camera
frames. Assuming a fixed aspect ratio (e.g. 4:3), a camera
frame can be defined asc = [x, y, z], where(x, y) denotes
the center point of the rectangular frame andz ∈ Z specifies
the resolution level of the camera frame. Here we consider
the coverage of the camera to be rectangular according to
the camera configuration space. Therefore the width and
height of the camera frame can be represented as4z and
3z, respectively. The four corners of the frame are located
at (x± 4z

2 , y ± 3z
2 ), respectively.

Given w and h are the camera pan and tilt ranges,
respectively, thenC = [0, w]×[0, h]×Z defines the set of all
candidate frames. Therefore,C2 indicates the solution space
for the 2-frame problem. Let us define any candidate solution
to the 2-frame problem as(c1, c2) ∈ C2. The objective of the
2-frame problem is to find the optimal solution(c∗1, c

∗

2) ∈ C
2

that best satisfies the requests.

B. Assumptions

We assume that the two frames are either taken from two
cameras that share the same workspace or taken from the
same camera. Therefore, if a location can be covered by a
frame, the other frame can cover that location, too.

We assume any feasible solution(c1, c2) satisfies the Non-
Overlapping Condition (NOC), i.e., the coverage regions of
c1 andc2 do not overlap. The NOC increases the overall cov-
erage of frames over requests since no request is redundantly
covered by both frames and thus is a favorable solution to
applications where searching ability is important.

C. Satisfaction Metric and Problem Formulation

With the NOC, the overall satisfaction ofn requests
(r1, r2, ..., rn) served by a solution(c1, c2) ∈ C

2 is,

s(c1, c2) =
n
∑

i=1

2
∑

j=1

I(cj , ri) ·min(
zi
zj

, 1), (1)

where

I(c, ri) =

{

1 if ri ⊆ c,

0 otherwise,
(2)

where we abuse the set operator⊆ to represent the 2D
regional relationship between frame(s) and request(s) in the
rest of this paper. Here,ri ⊆ c means that the region ofri
is fully contained in that ofc.

The metric in (1) is an extension of the Resolution Ratio
with Non-Partial Coverage (RRNPC) metric as in [1]. The
indicator function in (2) considers the camera coverage over
requests. It implies that the request is not satisfied if it is
not or partially covered by a frame. The second term in
(1) compares the resolution levels of camera frames and
requests. The resolution ratio is truncated by 1 since finer
camera resolution (smallerz) than desirable (zi) does not
increase the satisfaction level. This way, the satisfaction
metric in (1) represents a coverage-resolution tradeoff. With
the NOC assumption, we knows(c1, c2) = s(c1) + s(c2).

Eq. (1) shows that the satisfaction of any candidate(c1, c2)
can be computed inO(n) time. Now we formulate the non-
overlapping 2-frame problem as a maximization problem,
(c∗1, c

∗

2) = argmax(c1,c2)∈C2 s(c1, c2).

IV. A LGORITHMS

A. Feasibility condition

We start with analyzing the structural property of any
feasible solution.

Definition 1 (Separation):For any interval[x1, x2], we
define the 2-D point setSX

e (x1, x2) = {(x, y) ∈
R2|x1 ≤ x ≤ x2} as anx-separation. Similarly, we define
SY
e (y1, y2) = {(x, y) ∈ R2|y1 ≤ y ≤ y2} as ay-separation

for interval [y1, y2].
For any feasible solution (c1, c2) =

([x1, y1, z1], [x2, y2, z2]), we define,

SX
e (c1, c2) =SX

e (x1 +
4z1
2

, x2 −
4z2
2

)

∪ SX
e (x2 +

4z2
2

, x1 −
4z1
2

), (3)

SY
e (c1, c2) =SY

e (y1 +
3z2
2

, y2 −
3z2
2

)

∪ SY
e (y2 +

3z1
2

, y1 −
3z1
2

), (4)

as illustrated in Fig. 2. Intuitively, (3) and (4) define the
“gap” between frames.

Lemma 1 (Feasibility condition):Given any feasible so-
lution (c1, c2), it must have at least one non-empty separation
as defined in (3) and (4),SX

e (c1, c2) ∪ SY
e (c1, c2) 6= φ.

Lemma 1 is straightforward from the NOC. Given the
optimal solution(c∗1, c

∗

2), if SX
e (c∗1, c

∗

2) 6= φ, we call the
problem isx-separable. Similarly, ifSY

e (c∗1, c
∗

2) 6= φ, we
call the problem isy-separable. These two cases are not
mutually exclusive. Without loss of generality, we focus on
x-separable problem in the rest of this paper. As a convention
from here on, we usec1 to represent the “left” frame of a
solution, andc2 to represent the “right” frame as shown in
Fig. 2 for thex-separable problem. Hence, (3) is simplified
as,SX

e (c1, c2) = SX
e (x1 +

4z1
2 , x2 −

4z2
2 ).

B. Optimality condition

Lemma 1 defines the necessary condition for any feasible
solution. Unfortunately, there are infinite number of separa-
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Fig. 2. An illustration of the optimalx-separable solution. At least
one optimal solution(c∗

1
, c∗

2
) = (ci

1
, c

j
2
) corresponds to a separation

SX
e (xi, xj). S

X
e (xl, xj) is a minimal separation.rl is the closest request

on the left hand side of linex = xj . rh is the second closest request on

the left hand side of linex = xj . c
l−
1

can be incrementally computed by

comparingcl
1

andch−
1

, as in (12).

tions. Next, we show how to reduce the problem to finite
candidate separations to search for the optimal solution.

Given the optimal solution(c∗1, c
∗

2) as illustrated in Fig. 2,
slightly sliding c∗1 to the right does not change its satisfac-
tion level until its left side overlaps with that ofrk (i.e.,
x∗

1 −
4z∗

1

2 = xk), because neither the camera resolution nor
the camera-request coverage relationship changes. However,
if we slide c∗1 slightly to the left so that its right side is
on the left hand side of that ofri, i.e., x∗

1 +
4z∗

1

2 < xi,
the satisfaction level decreases because the frame loses the
complete coverage over requestri. Similar arguments can
apply to c∗2. This tells us that at least one optimal solution
is structurally defined by a separation, which corresponds to
a pair of request sides.

Lemma 2 (Optimality condition):For any x-separable
problem, there must exist one optimal solution,
(c′1, c

′

2) = ([x′

1, y
′

1, z
′

1], [x
′

2, y
′

2, z
′

2]) and a non-empty
separation SX

e (xi, xj), i, j ∈ P , such that, ri ⊆

c′1 with x′

1 +
4z′

1

2 = xi, andrj ⊆ c′2 with x′

2 −
4z′

j

2 = xj .
ThusSX

e (xi, xj) = SX
e (c′1, c

′

2) is the non-empty separation
for this optimal solution.

Proof: Given an optimal solution(c∗1, c
∗

2) as shown in
Fig. 2, we have,

s(c∗2) =
n
∑

k=1

I(c∗2, rk)min (
zk
z∗2

, 1). (5)

Let R∗

2 represent the set of requests which are fully enclosed
by c∗2. Then (5) is re-written as,

s(c∗2) =
∑

rk∈R∗

2

I(c∗2, rk)min (
zk
z∗2

, 1) =
∑

rk∈R∗

2

min (
zk
z∗2

, 1).

(6)
Let xj be the smallestx-coordinate of R∗

2, xj =
minrk∈R∗

2
xk. For c∗2 = [x∗

2, y
∗

2 , z
∗

2 ], there exists a frame

c′2 = [x′

2, y
′

2, z
′

2], such thaty′2 = y∗2 , z
′

2 = z∗2 andx′

2−
4z′

2

2 =

x′

2 −
4z∗

2

2 = xj . Intuitively, c′2 is the frame similar toc∗2
except that its left side overlaps with linex = xj . Let R′

2 be
the set of requests that are completely enclosed byc′2, then

s(c′2) =
∑

rk∈R′

2

I(c′2, rk)min (
zk
z∗2

, 1) =
∑

rk∈R′

2

min (
zk
z∗2

, 1).

(7)
Sincerj ∈ R∗

2, thereforerj ⊆ c∗2. We havex′

2 −
4z∗

2

2 =

Algorithm 1: Exhaustive Search Algorithm forx-
Separable Non-Overlapping 2-Frame Problem (ES-XS-2)
Input : Request setR.
Output : (c∗1 , c

∗

2)
1 foreach SX

e (xi, xj) O(n2)
2 do
3 if xi ≤ xj then
4 Computeci1 as in (8); T1(n)

5 Computecj
2

as in (9); T1(n)
6 end
7 end
8 return the best(ci1, c

j
2
) pair; O(1)

xj ≥ x∗

2 −
4z∗

2

2 , and thusx′

2 ≥ x∗

2. Therefore,x′

2 +
4z∗

2

2 ≥

x∗

2 +
4z∗

2

2 . For anyrk = [xk, yk, xk, yk, zk] ∈ R∗

2, we have,

xk ≥ xj = x′

2 −
4z′2
2

, xk ≤ x∗

2 +
4z∗2
2

≤ x′

2 +
4z′2
2

,

y
k
≥ y∗2 −

3z∗2
2

= y′2 −
3z′2
2

, yk ≤ y∗2 +
3z∗2
2

= y′2 +
3z′2
2

.

Therefore,rk ⊆ c′2 andR∗

2 ⊆ R′

2.

Comparing (6) and (7), we haves(c∗2) ≤ s(c′2). However,
if s(c∗2) < s(c′2), we can replacec∗2 with c′2 to obtain a
better non-overlapping solution, which contradicts the fact
that (c∗1, c

∗

2) is optimal. Therefore,s(c∗2) = s(c′2) and c′2 is
optimal. Similarly, we can find a framec′1 with y′1 = y∗1,

z′1 = z∗1 , and x′

1 +
4z′

1

2 = xi for c∗1. Therefore,(c′1, c
′

2)
is an optimal solution.SX

e (xi, xj) = SX
e (c′1, c

′

2) is the
corresponding separation for(c′1, c

′

2).

Lemma 2 defines the necessary condition for one optimal
solution. Each non-empty separationSX

e (xi, xj) corresponds
to a candidate solution. This leads to the exhaustive approach.

C. Exhaustive search

Based on Lemma 2, for each non-empty separation
SX
e (xi, xj), we reduce the 2-frame problem to two single

frame problems, each finding the optimal frame that has its
one side overlapping with one boundary of the separation.
We define these two constrained optimal frames,

ci1 = arg max
c=(x,y,z)

s(c), s.t. ri ⊆ c andx+
4z

2
= xi, (8)

cj2 = arg max
c=(x,y,z)

s(c), s.t. rj ⊆ c andx−
4z

2
= xj . (9)

We can find one optimal solution by exhaustively enumer-
ating allO(n2) non-empty separationsSX

e (xi, xj), i, j ∈ P.
For eachSX

e (xi, xj), the corresponding candidate solution
(ci1, c

j
2) can be obtained by solving the two single frame

sub-problems as in (8) and (9), respectively. Algorithm 1
summarizes the exhaustive search approach.

It is noticed that in lines 4 and 5 of Algorithm 1, it requires
the subroutines that solve the two sub-problems as in (8)
and (9), respectively. Both subroutines run inT1(n) time.
The implementation of the subroutines andT1(n) depend
on different camera resolution configurations, which will
be discussed in details later. The exhaustive search as in
Algorithm 1 runs inO(n3) +O(n2) · T (n) time.
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Fig. 3. An illustration of the sweeping of separation boundaries. During
sweeping from left to right, if the separation is not a minimal separation,
we contract the separation by moving its left boundary to itsnext candidate
position and the optimal frame on its left hand side is computed as in (12).
If the separation is a minimal separation, its right frame iscomputed as in
(9), and forms a candidate solution with the optimal left frame maintained
earlier.

D. Sweeping of separation boundaries

However, further observation reveals a more efficient
approach. Instead of enumerating allO(n2) separations
SX
e (xi, xj), i, j ∈ P, we only need to considerO(n) special

separations. Given any non-empty separationSX
e (xi, xj) as

shown in Fig. 2, we can always contract it to a smaller, non-
negative width by moving the left separation boundary to the
right, until the left boundary overlaps with a right request
side, which is the closest to the right separation boundary
(e.g.,xl in Fig. 2). We define this separation with smallest
non-negative width as the minimal separation.

Definition 2 (Minimal separation):Given any non-empty
separationSX

e (xl, xj), defined by requestsrl andrj , l, j ∈
P, we define it as the minimal separation with respect
to rj if rl is the closest request to linex = xj among
those on the left hand side ofx = xj , i.e., l =
argmink∈P (xj − xk) s.t. xk ≤ xj .

Given the optimal solution(c∗1, c
∗

2) = (ci1, c
j
2) and its

corresponding separationSX
e (xi, xj) as in Fig. 2, the cor-

responding minimal separation isSX
e (xl, xj) as illustrated

by the striped area. It is obvious thatc∗1 = ci1 is the optimal
frame which is on the left hand side of bothSX

e (xi, xj) and
SX
e (xl, xj). We define the optimal frame on the left hand side

of a separation as follows. Given any left separation boundary
at x = xl, l ∈ P, we define framecl−1 as the optimal frame
that is on the left hand side of the left separation boundary,

cl−1 = arg max
ck
1
, k∈P

s(ck1), s.t. xk
1 +

4zk1
2

≤ xl. (10)

Therefore, we can find an optimal solution by enumerating
all O(n) minimal separations. For each minimal separation
SX
e (xl, xj), we compute the correspondingcl−1 andcj2.

The remaining question is how to efficiently computecl−1
for each minimal separation. Direct computation based on
(10) requires to computeO(n) constrained optimal single

Algorithm 2: Sweeping Search Algorithm forx-
Separable 2-Frame Problem (SS-XS-2)
Input : Request setR;
Output : (c∗1 , c

∗

2);
1 Sort left sides ofR : B = [b[1], ..., b[n]]; O(n log n)
2 Sort right sides ofR : B = [b[1], ..., b[n]]; O(n log n)
3 Sort top sides ofR; O(n log n)
4 Sort bottom sides ofR; O(n log n)
5 Sort requested resolutions ofR; O(n log n)
6 c−

1
= φ; c∗1 = φ; c∗2 = φ; O(1)

7 u = 0; v = 1; O(1)
8 while v < n O(n)
9 do

10 if b[u+ 1] > b[v] #Minimal separation
11 then
12 Find b[v] belongs torj ; O(1)
13 Computecj

2
as in (9) T1(n)

14 if s(c∗1) + s(c∗2) < s(c−
1
) + s(cj

2
) then

15 (c∗1, c
∗

2) = (c−
1
, c

j
2
) O(1)

16 end
17 v = v + 1; O(1)
18 end
19 else
20 u = u+ 1; O(1)
21 Find b[u] belongs torl; O(1)
22 Computecl1 as in (8); T1(n)
23 if s(c−) < s(cl1) then
24 c−

1
= cl1; O(1)

25 end
26 end
27 end
28 return (c∗1, c

∗

2) O(1)

frames as in (8) and compare all of them. Given the minimal
separationSX

e (xl, xj), let rh be the second closest request
left to line x = xj , as illustrated in Fig. 2,

h = argmin
k∈P

(xj − xk), s.t. xk ≤ xl ≤ xj . (11)

Then the computations ofch−1 and cl−1 based on (10) only
differ in computings(cl1). Therefore, we have,

cl−1 =

{

ch−1 if s(ch−1 ) > s(cl1),

cl1 otherwise.
(12)

Eqs. (11) and (12) suggest an incremental approach to
calculate cl−1 , l ∈ P. We search for all candidate left
separation boundaries, which are defined by right request
sides{xl, l ∈ P}, from left (x = −∞) to right (x = ∞)
and incrementally compute eachcl−1 , l ∈ P, as in (12).

To search for all minimal separations, we sort all vertical
request sides and sweep a separation, which is defined by the
vertical request sides, from left to right as illustrated inFig. 3.
In each sweeping step, we either contract the separation
by moving its left boundary toward right or expand the
separation by moving its right boundary toward right.

• If the separation is not a minimal separation, we contract
the separation by moving the left boundary to its next
candidate position. The optimal frame on the left hand
side of the new separation is computed as in (12).
Figs. 3(f) to 3(g) illustrate these operations.

• If the separation is a minimal separation. We compute
the optimal frame on the right hand side of the separa-
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Fig. 4. An illustration of findingcj
2

as in (9) with fixed resolution. Slide
the candidate framec2 along linex = xj from a initial position. Whenever
a horizontal frame side aligns with that of a request, the change in s(c2)
can be computed inO(1) time.

tion as in (9). Since the optimal frame on the left hand
side of the separation is maintained as described above,
combining the two frames forms a candidate solution.
After that, we expand the separation by moving the
right boundary to its next candidate position and a new
sweeping step starts. The expansion from Fig. 3(d) to
Fig. 3(e) illustrates these operations.

We summarize the sweeping search algorithm for solving
x-separable 2-frame problem in Algorithm 2. Since both the
separation need to be contracted and expandedO(n) times,
respectively, the sweeping search as in Algorithm 2 runs in
O(n)T1(n) time.

E. Algorithm complexity with different camera resolution
configurations

We turn to the the subroutines for solving the sub-
problems as in (8) and (9), under different camera resolution
configurations. Without loss of generality, we only discuss
the subroutine that calculates the optimal single frame on the
right hand side of the separation,cj2, as in (9).

1) A Fixed Camera Resolution:We first consider the case
in which the cameras have a fixed resolutionz = z0. Given
the right separation boundary atx = xj as shown in Fig. 4.

Recall cj2 satisfiesxj
2 −

4zj
2

2 = xj and rj ⊆ cj2. Since the
camera frame has a fixed size (resolution), we can align the
left side of a candidate framec2 with line x = xj and slide
c2 along the linex = xj while maintainingrj ⊆ c2 to search
for all candidate frames. Based on the metric in (1), we know
thats(c2) changes only at the moments when one horizontal
side of c2 overlaps with that of a request. Therefore, there
are totally O(n) candidate frames. Evaluating all of the
candidate frames takesO(n2) time. However since we have
sorted horizontal request sides, based on (1), each change in
s(c2) during the sliding can be determined inO(1) time.
Therefore, we can simply calculate the satisfaction of an
initial candidate frame (e.g., the frame withy2 + 3z2

2 = yj)
and updates(c2) by slidingc2 upward along the linex = xj

while maintainingrj ⊆ c2. We summarize the subroutine
in Algorithm 3, which runs inO(n). This means when the
cameras have a fixed resolution,T1 = O(n) and Algorithm 2
runs inO(n2) time.

Algorithm 3: Subroutine solving (9) with a fixed reso-
lution
Input : Right separation boundary atx = xj ;

Output : cj
2
;

1 Create candidate framec2; O(1)
2 Setx2 −

4z2
2

= xj , y2 +
3z2
2

= yj ; O(1)
3 Calculates(c2); O(n)
4 while y2 −

3z2
2

< y
j

O(n)

5 do
6 Slide c2 upward along linex = xj until one of its

horizontal sides aligns with that of a request; O(1)
7 Updates(c2); O(1)
8 end
9 return the bestc2; O(1)

2) Discrete Camera Resolutions:Now we consider the
cameras havem discrete resolution levels. In this case, for
each right separation boundary, we just run the subroutine
in Algorithm 3 m times, each time for one resolution level,
respectively. Therefore, when the cameras havem discrete
resolution levels, Algorithm 2 runs inO(n2m) time.

3) Continuous Camera Resolutions:Finally, we consider
the cameras have continuous resolution range[z, z]. We

already know the left side ofcj2 satisfiesxj
2 −

4zj
2

2 = xj .
As shown in Fig. 4, the extended line of a horizontal
request sidey = yk intersects with linex = xj at vertex
(xj , yk). (xj , yk) is defined as Base Vertex (BV) in [9].
According to the optimality condition in Lemma 2 of [9],
one optimal framecj2 must have one corner coincident with
a BV. Song et al. [9] propose a Base Vertex Incremental
Computing with Diagonal Sweeping (BV-IC-DS) algorithm
to find an optimal frame. The basic idea is to expand the
candidate frame along its extended diagonal by increasing
the resolution. The satisfaction of the frame changes only at
O(n) number of critical resolution values and the changes
between consecutive critical values can be determined in
constant time. We apply a modified BV-IC-DS here. We skip
the details and readers can refer to [9] for details.

BV-IC-DS runs inO(n) for each BV and we haveO(n)
BVs for each separation boundary. This means when cameras
have continuous resolution levels,T1(n) = O(n2) and
Algorithm 2 runs inO(n3) time.

Theorem 1:When cameras have a fixed,m discrete and
continuous zoom level(s), Algorithm 2 runs inO(n2),
O(n2m) andO(n3) times, respectively.

V. EXPERIMENTS

We have implemented all the algorithms using Microsoft
Visual C++ 2005. We test the algorithms on a desktop PC
with a 3.2GHz Pentium(R) D CPU, 2 GB RAM, and a hard
disk of 320 GB. We test the speed of the algorithms with
different settings ofn.

We use random input for testing. First,sd 2-D points
are uniformly generated across[0, w] × [0, h]. Each point
indicates a location of interest and is designated as “seed”.
Each seed is associated with a random radius of interest.
To generate a request, we first randomly assign it to a seed.
Then within the radius of the seed, a 2-D point is randomly
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Fig. 5. Computation speed of algorithms with a fixed and continuous zoom
level(s), respectively, and the comparison with the approximation algorithm
in [1] with approximation boundǫ = 0.35, 0.30 and 0.25, respectively.

generated as the center of the rectangular request region and
two random numbers are generated as the width and height
of the request. Finally, the resolution value of the requestis
randomly generated across the resolution range[z, z].

Across the experiments, we setw = 80, h = 60, z = 5,
z = 15 and sd = 5. We set the fixed camera resolution as
z0 = 8. For each setting ofn, 100 trials are carried out
for averaged performance. Fig. 5 illustrates the relationship
between computation time andn for proposed algorithm
with a fixed and continuous zoom level(s), respectively. It is
shown the proposed algorithm with fixed zoom is very fast. It
takes only 10 ms withn = 200, which is usually very large
for most surveillance systems. Though the computation time
of the algorithm with continuous zoom increases much faster
asn increases, it takes only less than 900 ms withn = 200.
Both curves are consistent with our complexity analysis.

We also compare the proposed algorithm with the approx-
imation algorithm in [1], which run inO(n/ǫ3 + p2/ǫ6)
time, where ǫ is the approximation bound. We test the
approximation algorithm withǫ = 0.35, 0.30 and 0.25,
respectively. It is shown that the approximation algorithm’s
speed performance deteriorates very quickly asǫ increases.
With n ≤ 200, the approximation algorithm takes almost
2 seconds even if the approximation bound is considerably
large asǫ = 0.25. Whenǫ becomes even worse as 0.30 and
0.35, the approximation algorithm will eventually outspeed
the proposed algorithm atn =160 and 100, respectively. It
is also worth mentioning that the computation time of the
approximation algorithm is proportional to the size of the
problem space[0, w]× [0, h] while the speed of the proposed
algorithm is independent ofw andh.

These tell us that for applications wheren is not very
large but the problem space[0, w] × [0, h] is large, and the
accuracy of the solution is a significant concern, the proposed
algorithm outperforms the approximation algorithms in both
speed and solution quality. Ifn is very large but the problem
space [0, w] × [0, h] is small, and rough solution (e.g.,
ǫ ≥ 0.25) is acceptable, then the approximation algorithm
is a faster alternative. In fact, most visual object tracking
and surveillance systems [10], [11] can handle much less
than 100 objects at the same time while accurate object
tracking/observation is required, which qualifies the proposed
algorithm as a viable solution for these applications.

Fig. 6 shows two sample outputs of the algorithm with

(a) (b)

Fig. 6. Sample simulation results for random input. Dashed-line rectangles
denote requests and grey rectangles are optimal frames.n = 100, sd = 5.

continuous zoom andn = 100. In both cases, our algorithm
reasonably locates 2 frames to cover most of the requests.

VI. CONCLUSION

We formulate the non-overlapping 2-frame problem with
non-partial coverage as an optimization problem. We propose
a series of algorithms for solving the problem under different
camera resolution configurations. For cameras with fixed,
m discrete and continuous resolution level(s), we propose
algorithms to solve the 2-frame problem inO(n2), O(n2m)
andO(n3) time, respectively. We have implemented all the
algorithms and experimental results are consistent with our
complexity analysis.
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