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Abstract We introduce a new type of probabilistic boundary coverage problem
where a robot has to enclose unknown target fields (UTFs) with large perception
uncertainty and limited sensing range. When the robot gets closer to UTF and ac-
cumulates sufficient sensory readings, it employs Gaussian processes (GPs) as a
local belief function to approximate field boundary distribution in an ellipse-shaped
local region. The local belief function allows us to predict UTF boundary trends
and establish an adjacent ellipse for further exploration. The process is governed by
a depth-first search process until UTF is approximately enclosed by connected el-
lipses when the boundary coverage process ends. We formally prove that our bound-
ary coverage process guarantees the enclosure above a given coverage ratio with a
preset probability threshold. We have implemented our algorithm and tested it under
different field types in simulation.

1 Introduction

Imagine that an unmanned aerial vehicle (UAV) is dispatched to map boundaries
of excessive wind shear or low pressure regions in storm cells (see Fig. 1). The
UAV has to plan its motion based on its on-board sensor readings to quickly enclose
the unknown target field (UTF), which is a form of boundary coverage problem.
However, UTFs often do not have a clear boundary or a priorly known dispersion
function and the UAV has to get closer to the field to take multiple readings to predict
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Fig. 1 Problem illustration. a) Wind shear region boundary coverage application: The green &
orange clouds represent potential regions of interest that may contain UTFs. To map each UTF, we
need to send an UAV to cage the UTF. b) Output of our boundary coverage algorithm is to cover
the boundary using a sequence of connected ellipses.

field dispersion for boundary coverage. Moreover, the sensor readings often contain
large uncertainties due to variations of the field itself or difficult sensing conditions.
It is clear that regular boundary traversing techniques are not applicable. Such prob-
lems are not unusual. Another example is that an inspection robot is tasked to find
thin hairline cracks on airport runway. These applications propose a new problem:
how can we design a principled approach to ensure the robot can effectively cage
UTFs under large perception uncertainty and limited sensing range.

We present this new boundary coverage problem and propose an algorithm to
solve the problem. At each step, the robot accumulates sufficient sensory readings
to instantiate Gaussian processes (GPs) as a local belief function to approximate
field dispersion in an ellipse-shaped local region. The local belief function allows
us to predict UTF boundary trends and establish adjacent ellipses for further ex-
ploration in next step. The process is governed by a depth-first search process until
UTF is enclosed by connected ellipses (see Fig. 1(b)) with probability guarantees,
as we formally prove that our boundary coverage process guarantees that the en-
closed UTF is above a given coverage ratio with a preset probability threshold. We
have implemented our method and tested with different types of UTFs (1D vs. 2D,
smooth vs. non-smooth boundary, and convex vs. non-convex) in simulation. The
results show that the algorithm always guarantees that the coverage ratio is above
the given threshold for all testing cases, which is conformal to our analysis.

2 Related Work

This new UTF boundary coverage problem relates to many existing works including
coverage in continuous fields, discrete space search, robotic caging in manipulation
and grasping, and GPs.

Boundary coverage of UTFs is related to well-studied coverage problems be-
cause the latter also need to identify target field boundary before planning for cover-
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age. However, identifying boundary might not be an issue if target field information
is known whereas our problems focus on identifying boundaries. In coverage prob-
lems, the focus is to calculate optimal trajectories with respect to a given objective
function for known field functions. Most existing methods depend on gradients or
other information from the known field functions. Yun et al. [32] present the de-
centralized algorithms for the coverage with mobile robots on a graph. Miller et al.
[16] use an ergodic control algorithm for the coverage with respect to the expected
information density. Shnaps et al. [24] perform online tethered coverage in planar
unknown environments using position and local obstacle detection sensors. Bekris et
al. [2] apply cloud computing to efficiently plan the motion of new robot manipula-
tors designed for flexible manufacturing floors. In our boundary coverage problem,
we have to approximate field functions based on noisy and local/partial observations
before planning for robot motion which further complicates the problem.

Searching for point/small objects without field functions can be viewed as a dis-
crete search problem. The original search space could be either continuous or dis-
crete but it is often discretized into grids or graphs in the searching process [5].
Acar et al. [1] introduce a hierarchical decomposition that combines the Morse de-
compositions and the generalized Voronoi diagram to ensure that the robot covers
the searching domain. Paull et al. [17] present a sensor driven on-line approach for
seabed coverage for mine countermeasure using grid-based coverage. Xu et al. [30]
address the problem of effective graph coverage with environmental constraints and
incomplete prior map information. Mannadiar et al. [14] guarantee the complete
coverage of the free space based on the Boustrophedon cellular decomposition. Al-
though these methods can be applied to UTF searching problem, their efficiency
is problematic because the existing methods do not exploit the continuity of UTF
structure.

Boundary coverage of UTFs is related to the caging problem in grasping which
focuses on using geometric information of the manipulated object to generate stable
grasps [6, 13, 19, 23, 29]. Vongmasa et al. [28] compute coverage parameters for
2D polygons to form a cage to transport an object. Pereira et al. [18] enable a team
of robots with limited sensing range to achieve a condition of object closure, and
move toward a goal position while maintaining the object closure condition. Ivan
et al. [7] compute coverage without the reliance to geometrical detail but capture
the topology of punctured euclidean spaces. Zarubin et al. [33] use geodesic balls
to estimate object’s surface in the presence of noise. These methods compute the
waypoints for the object to generate a set of caging grasps. One issue that separates
UTF caging from object caging is the issue of limited sensing range because objects
are often small and fully covered by the sensor in the grasping process.

GPs become a powerful tool to represent unknown environments with limited
observations [21]. GPs are widely used in geographical terrains [3, 27], nonlinear
systems [31], complex environments [9, 12, 15], autonomous robotic vehicles [4],
solar map constructions [20], and sensor networks [8] etc. Furthermore, GPs are ca-
pable to deal with the sensor information with uncertainties. In this case, we utilize
GPs to approximate the distribution of the UTFs based on existing observations.
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Our group has experiences in robotic searching problems. Our previous work
develops algorithms and systems to detect an unknown wireless sensor network that
intermittently transmits signals [10, 11, 25, 26]. The focus of our previous work is
the modeling of stochastic properties of point targets where this work focuses on
field targets.

3 Problem Formulation

3.1 Scenario and Assumptions

A mobile robot or UAV is dispatched to find an efficient path to enclose UTFs in
an obstacle-free 2D space. This robot is equipped of sensors with a limited sensing
range. The robot observation noise follows a Gaussian distribution with zero mean
and variance σ2. To formulate the UTF boundary coverage problem, we have the
following assumptions:

1. We assume that the UTF is much larger than the sensing capabilities of the robot,
and the moving speed of the robot is much faster than that of the UTF. This is
common for large scale coverage occurring on the surface of the Earth.

2. The robot knows its current position using global positioning system and has a
memory of where the robot has visited before.

3. We have no knowledge about UTF shapes.
4. GPs are capable of approximating the UTF boundary distribution.

3.2 UTF Properties and Modeling Perception

To further clarify our problem, let us define UTF and its key properties. Denote zt
to be the sensor readings at time t when the robot is at position xt = [x(t) y(t)]T ∈
R2, and set ZT = {z1,z2, ...,zT} as all observations sensed from the beginning of
localization process up to time T . Denote T to be the UTF region and x = [x,y]T ∈
R2 to be a point in the 2d space. T is usually obtained by thresholding field boundary
distribution function or geometric constraints which are described as follows,

T :=

{
x
∣∣∣{IIN =

∧
zt∈ZT

(
f (zt ,xt ,σ)≥ ft

)}
= 1 (is TRUE)

}
, (1)

where indicator variable IIN ∈ {0,1} is binary (boolean) variable depending on if the
thresholding criteria are satisfied,

∧
is logic AND operator, f is a nonnegative field

boundary distribution function, σ is the standard deviation of observation noise, and
thresholding value ft for field value is predetermined by application.
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Unfortunately, there is often no prior knowledge about shape and position of
UTFs. Instead of computing from geometric constraints, indicator variable IIN val-
ues are often obtained by thresholding sensory readings. We assume the robot is
equipped with an omni-directional sensor with the maximum sensing distance ds.
If ds = 0, the sensor becomes a point sensor such as a barometer measuring air
pressure changes at its current position; if ds > 0, the sensor may have measurable
coverage like a camera covering the UTF. Let ∂T be the T’s boundary. ∂T would
be unmeasurable if there were no uncertainty in the sensing process. Due to the fact
that zt is normally distributed, we have,

∂T :=
{

x
∣∣∣IUTF = 1,x ∈ T

}
, (2)

where IUTF ∈ {0,1} is a binary indicator variable describing if the point is a boundary
point and

IUTF =
( ∨

zt∈ZT

(
f (zt ,xt ,σ) = ft

))∧(
IIN=1

)
. (3)

It is worth noting that (3) usually cannot be directly computed since we do not
know f . With observations from multiple sensor readings, it can be predicted by a
GP based on observations (zt ,xt). To ensure the coverage of a UTF, we just need to
cover its boundary ∂T. The coverage of UTF interior is trivial if ∂T is covered.

3.3 Problem Definition

To quantify the boundary coverage performance, we need to define a performance
metric to determine the trade-off between quality and effort: let β ∈ (0,1] be the
coverage ratio threshold for UTF boundary. Denote ST to be the length of the UTF’s
boundary ∂T. We have the following boundary coverage success metric.

Condition 1 (Quality Metric) The boundary coverage task for the UTF is consid-
ered to be accomplished if the covered boundary is no less than βST where ST is the
length of the UTF’s boundary ∂T.

With inputs and quality metric defined, our problem is described as follows,

Problem 1 Given the observation set ZT , plan robot trajectory xT+1 based on xT
to generate ellipses to cover ∂T with Condition 1 satisfied.

4 System Modeling

The robot starts the boundary coverage process when it encounters an UTF region.
The boundary coverage process generates a sequence of ellipses to enclose the UTF,
which are treated as nodes for a depth-first search of a tree. Employing a sequence of
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ellipses allows us to break down a long boundary traversing problem into a sequence
of local problems to reduce problem scale. In each local problem, we can handle
challenges associated with limited sensing range and observation uncertainty. We
arrange each ellipse to have its long axis aligned with the boundary of the UTF
to speed up the boundary converge process. At each ellipse, the robot accumulates
observations to instantiate a Gaussian Process (GP) to predict the position of next
ellipse along the boundary. The depth-first search ensures that the robot traverses
the entire UTF boundary and coordinates ellipse generation as tree expansion which
will be detailed later.

Let us clarify the use of index variables in the depth-first search progress. Ellipse
Aq is where the robot is currently located. Index g refers to the total number of
ellipses. Since we start the index with its root at A0, Ag is also the new ellipse
during new node generation. Ap refers to which neighboring ellipse the robot uses
to enter Aq. The “neighboring ellipse” refers to either parent or child nodes of q on
the search tree.

The whole process consists of two main steps: initialization and boundary
traversing. We start with system initialization.

4.1 Ellipses, Robot Trajectory, Observation Set, and Initialization
of the Depth-First Search

The boundary coverage process relies on a sequence of ellipses to track UTF bound-
aries. Define Aq as the q-th ellipse,

Aq =
{

x
∣∣∣(x−xq)

T Cq (x−xq)≤ 1
}
, (4)

where xq = [xq,yq]
T is its center point and Cq is a 2×2 positive definite matrix.

Aq
xp xq

(a) Accumulate obs. in Aq

Aq xg

Lq(λ )xp

Ag

xq

(b) Compute Lq(λ ) and obtain Ag

Fig. 2 The robot accumulates observations in Aq in blue shaded area in a), establishes belief func-
tions in Aq using a GP based on observation set Oq, which assists in determining Ag in b).

When the robot enters Aq from a neighboring ellipse center xp to current ellipse
center xq along the shortest path, the robot trajectory set uq in Aq can be defined as,

uq = {x|x = ρxp +(1−ρ)xq,ρ ∈ [0,1]} (5)
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if ignoring obstacles. Denote t j ∈ R as the exact continuous time at the moment of
the discrete time j when the robot with constant velocity traverses from xp to xq. Let
t j−t j−1 = c0 for j > 0 where c0 ∈R++ is a constant variable. The index j is reset to
zero every time when the robot reaches xq. During the travel, the robot accumulates
observations from its on-board sensor to establish its observation set Oq,

Oq =
{
(x,zt j)

∣∣ |x−xt j | ≤ ds,xt j ∈ uq
}
, (6)

and denote x ∈ Xq. Fig. 2(a) illustrates the observation set Oq coverage in Aq.
The ellipse generation process initializes at the moment when the robot first en-

counters an UTF at point x0. It immediately generates A0 which is chosen to be
a circle because it is likely that we do not have enough information to determine
boundary direction yet. For A0, we have

C0 =

[
1/4d2

s 0
0 1/4d2

s

]
. (7)

On the other hand, u0 is slightly different from (5) because we do not have a neigh-
boring ellipse. Alternatively, we substitute xp with xenter in (5) to obtain u0 where
xenter is the point of entry to A0 during the global search process. Consequently, we
have a non-empty observation set O0.

4.2 Depth-First Search-based Boundary Traversing

We employ a depth-first search over a tree, which contains all ellipses as tree nodes.
Ellipses A0 is the root node of the ellipse tree. Each node q stores its uq and Oq.
Oq is updated as the robot travels inside the ellipse. As mentioned before, the robot
only moves between ellipse centers xq of neighboring tree nodes along a linear path
because we ignore the obstacle in the process. This also yields a piecewise linear
trajectory for the robot.

4.2.1 Branching Method

At each ellipse Aq, the robot uses Oq to instantiate a GP [21] approximating the
belief function for ∂T in Aq which provides information to determine Ag. More
specifically, for an x ∈ Aq, the GP provides posterior distribution P(IUTF|x,Oq) for
the UTF region to stand for the field function. It is worth noting that Oq theoretically
contains infinite number of observations. To facilitate computation, we sample Oq
using a local lattice according to sensor spatial resolution or task needs to accelerate
GP training time. Recall Oq is continuously updated according to robot trajectory
set. This leads to a recursive Bayesian estimation process, which can be computed
using a two-phase approach [22]:
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1. Update Phase: For an x∗ ∈Oq,

P(I∗UTF|x∗,Oq) = bel(I∗UTF| f ∗(x∗),σ2), (8)

where the latent function f ∗ is represented by GP, an approximation of (3).
2. Prediction Phase: The GP provides posterior distribution for the UTF boundary

for a given x /∈Oq,
P(IUTF|x,Oq) = bel(IUTF|µI ,σ

2
I ). (9)

Here, µI and σ2
I are the expectation and variance of the posterior distribution re-

lated to kernel function, which characterizes the correlation between the function
values at different locations, namely, f ∗(xi) and f ∗(x j). We employ a histogram
intersection kernel K as

K(xi,x j) =
2

∑
d=1

min(xi(d),x j(d)). (10)

for xi,x j ∈ R2 with µI = kT
∗ (K + σ2I)−1I∗UTF and σ2

I = k∗∗kT
∗ (K + σ2I)−1k∗

where k∗ = K(Xq,x), K is the kernel matrix of the training data Xq, k∗∗ =
K(x,x), and I is an identity matrix.

To approximate UTF boundary ∂T, we calculate the level set Lq(λ ) where
threshold λ > 0, to cover regions with high probability of containing the bound-
ary. This is done by thresholding on P(IUTF|x,Oq).

Lq(λ ) =
{

x|P(IUTF|x,Oq)≥ λ ,x ∈ Aq
}
. (11)

The value of threshold λ is determined by coverage ratio threshold β in Condition 1
and will be discussed in Section 5.2.

Now let us show how to determine xg, center of the new node on the ellipse tree.
The boundary of Lq(λ ) intercepts the boundary of Aq and generates a set of points
XL

q . As illustrated Fig. 2(b), we evenly divide Aq into kd = 12 sectors with each sec-
tor spans 2π/kd = π/6. For each sector, we identify a middle angle boundary point
xs

q by intercepting Aq boundary with the ray shooting from the ellipse center along
the middle angle (π/kd from the sector side). We add xs

q to the candidate solution
set X∗q for xg if we can find a solution in set XL

q located on the corresponding sector
boundary. This means that we use XL

q to filter out less likely candidate center loca-
tions. To avoid repeated search, we remove xs

q of the sector where the robot enters
Aq from the candidate solution set X∗q. Therefore, set X∗q only contains branches that
robot has not visited.

4.2.2 Termination Scenarios

With X∗q introduced, let us explain the termination condition of the search, which
has two scenarios. When X∗q is empty, it means that the robot reaches the extreme
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end of the UTF which is the leaf of the depth-first search tree. Now the only choice
is to let the robot traverse back on the tree to the parent ellipse and check if the
candidate solution set of the parent ellipse is non-empty. If a non-empty node is
found, we enter the tree expansion case as described in the sub-section. Otherwise,
we keep back-traversing the robot and repeat this process along the tree to upper
level parent node. We update p and q in the process.

If we return to the root and find X∗0 is empty, it means the robot has covered the
entire search tree in the boundary traversing. This concludes the first termination
scenario and the depth-first search ends. This scenario occurs a lot with curves,
lines or other thin UTFs.

For a compact and sizable UTF, it is likely that the robot loops around the UTF
(see Fig.1(b)), which is the second termination scenario. Because it leads the robot
to travel back to A0, we can identify this by verifying if xq ∈ A0 is true. We also
need to remove the candidate solution from the sector that contains xq in X∗0. Again,
if X∗0 is empty, the search ends.

4.2.3 Node/Ellipse Generation

Next is about tree expansion or node generation process. It happens if the candidate
solution set X∗q is non-empty for the original q or the updated q from the back-
traversing process, then we choose the xg as follows,

xg = argmax
x∈X∗q

(
arccos

〈xq− ,x∗,q〉
‖xq−‖ · ‖x∗,q‖

)
. (12)

where xq− = xq−xp represents the vector describing how the robot enters Aq, x∗,q =
x−xq, ‖·‖ is vector l-2 norm, and 〈·, ·〉 is vector inner product. This means that the
candidate is the closest to the direction that the robot enters Aq. Once xg is chosen,
we remove it from X∗q = X∗q \{xg}. This is to avoid repeated search when we return
to Aq in the depth-first search process. Again, set X∗q keeps track of the visited
branch of the search tree. New node g is added to the tree with its parent to be q and
g = g+1.

After obtaining new center xg, we place Ag into its position by determining Cg.
Set the long and short axes of Ag to be 4ds and 2ds, respectively. To approximate the
UTF boundary, we want the long axis of Ag to be aligned with xg−xq as follows,

Cg =

[
cosθ −sinθ

sinθ cosθ

][ 1
16d2

s
0

0 1
4d2

s

][
cosθ sinθ

−sinθ cosθ

]
, (13)

where θ is determined by

θ = arctan
(yg− yq

xg− xq

)
. (14)

After Ag is determined, the robot motion is also obtained as ug. As the robot
moves toward xg, we update X∗q, p, and q accordingly.
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5 Boundary Coverage Performance Analysis

The remaining question is how good the boundary coverage quality is and how to
guarantee Condition 1. We first analyze the coverage quality for a point x in Aq and
then aggregate it into the entire boundary.

5.1 Probability Bounds for a Point x in Aq

The UTF boundary ∂T is covered by the level set Lq(λ ) which is generated by
the thresholding on P(IUTF|x,Oq) in (11). It is important to understand P(IUTF|x,Oq).
P(IUTF|x,Oq) is a function of its condition (x,Oq) which means it is still a random
variable because (x,Oq) are random variables. Since it is a random variable, it has
an expectation E (P(IUTF|x,Oq)). E (P(IUTF|x,Oq)) can be estimated by averaging
P(IUTF|x,Oq) across all points using the output from GPs. E (P(IUTF|x,Oq)) can be
viewed as an observation of the unconditional distribution P(IUTF). P(IUTF) is the
mean value of P(IUTF|x,Oq). P(IUTF) is important because it can help us to determine
if we miss any UTF boundary points when performing thresholding in (11). We do
not know P(IUTF) but we know its low bound in probability as follows.

Lemma 1 with 1−τ probability, P(IUTF) which is the unconditional probability that
a point in Aq belongs to UTF boundary has the following lower bound B−q ,

P(IUTF)≥ B−q = inf
η>0

{
E(P(IUTF|x,Oq))−

η

2
− 1

lmaxη
log

1
τ

}
, (15)

where τ ∈ (0,1) is a chosen small number, lmax is the set cardinality of Lq(λ ), and
nonnegative variable η is determined by the inf computation.

Proof. The lower bound of P(IUTF) can be proved by relating it to its estimator
E(P(IUTF|x,Oq)). We construct the following probability event E0 for t >−1,

P(E0) = P
(

P(IUTF)−
η

2
−E (P(IUTF|x,Oq))≤−(t +1)

)
, (16)

This is equivalent to,

P(E0) = P(e−η lmax(P(IUTF)− η

2 −E(P(IUTF|x,Oq))) ≥ eη lmax(t+1)), (17)

and apply Markov’s inequality, we have,

P(E0)≤ e−η lmax(t+1)E
(

e−η lmax(P(IUTF)− η

2 −E(P(IUTF|x,Oq)))
)
. (18)

Since eη lmax
η

2 ≥ 1, we multiply it to the right hand side of (18) and move the constant
terms outside the expectation E(·), we have
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P(E0)≤e−η lmax(t− η

2 )−η lmax(P(IUTF)− η

2 )

×E
(

eη lmax(E(P(IUTF|x,Oq))−1)
)

(19)

Using the fact that E(P(IUTF|x,Oq))≤ 1, we know

P(E0)≤ e−η lmax(t− η

2 )−η lmaxP(IUTF)+
η2lmax

2 E
(
e0) , (20)

which leads to

P(E0)≤ e−η lmax(t− η

2 )+
η2lmax

2 = τ. (21)

We can solve t from (21) and plug it back to (16) and the lemma is proved.

5.2 Probability of Covering an UTF Boundary Point in Level Set
Construction

Lower bound B−q can help us determine the probability that the UTF boundary
is captured by the GP in level set construction (11). It also helps determine how
to choose λ . It is clear that a reasonable λ should be smaller than B−q . Defin-
ing F(µ,σ2)(x) as the cumulative probability function of the Gaussian distribution
N(µ,σ2), we have the following lemma,

Lemma 2 For a given lower bound B−q and λ ≤B−q at point x∈Aq when computing
the level set Lq(λ ), the probability that an UTF boundary point satisfies (11) is no
less than (1−F(B−q ,σ2

I )
(λ ))(1− τ) where σ2

I is the variance of P(IUTF|x,Oq).

Proof. From GP model, we know P(IUTF|x,Oq) is a Gaussian distribution with mean
µI = P(IUTF) and variance σ2

I . For a given λ and B−q , the fact that an UTF boundary
point is captured means the following conditional event P(IUTF|x,Oq) ≥ λ |µI ≥ B−q
occurs. We now compute its probability by further conditioning on E0 and applying
the fact that B−q is not a deterministic bound,

P(P(IUTF|x,Oq)≥ λ |µI ≥ B−q )

= P(P(IUTF|x,Oq)≥ λ |µI ≥ B−q ,E0)(1− τ)

+P(P(IUTF|x,Oq)≥ λ |µI ≥ B−q ,E0)τ

≥ P(P(IUTF|x,Oq)≥ λ |µI ≥ B−q ,E0)(1− τ)

≥ P(P(IUTF|x,Oq)≥ λ |µI = B−q ,E0)(1− τ). (22)

Therefore, we have

P(P(IUTF|x,Oq)≥ λ |µI ≥ B−q ))≥ (1−F(B−q ,σ2
I )
(λ ))(1− τ). (23)

Note that σ2
I can be obtained using GP outputs.
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5.3 Ensure Boundary Coverage Quality

Recall that we have coverage ratio threshold β in boundary coverage quality met-
ric defined in Condition 1 in our problem definition in Section 3.3. To satisfy the
condition, we choose λ and τ accordingly. This means that we can set

(1−F(B−q ,σ2
I )
(λ ))(1− τ) = β , (24)

to help obtain correct threshold λ . We do have some freedom in choosing τ to assist
the selection of λ . It is not difficult to perform a binary search to obtain it.

5.4 Algorithm and Complexity Analysis

Algorithm 1: Boundary Coverage of an UTF
Input : robot observations Oq
Output: robot trajectory in set G

1 Generate A0 at x0; .O(1)
2 Stack S = {}; .O(1)
3 Push(S,x0); .O(1)
4 while S is not empty do .O(ν)
5 xq = Pop(S); .O(1)
6 if Visited(xq) := FALSE then
7 Visited(xq) := TRUE; .O(1)
8 Update p and q according to trajectory; .O(1)
9 P(IUTF|x,Oq) using GPs; .O(nq lognq)

10 Obtain B−q according to (15); .O(logns)

11 Calculate λ through (24); .O(1)
12 X∗q =

⋃
xs

q\{xp}; .O(1)
13 if X∗q = /0 or xq ∈ A0 for q 6= 0 then
14 if Robot at A0 then
15 Break; .O(1)

16 else
17 Travese back to parent node; .O(1)

18 else
19 Obtain Ag and move to xg; .O(1)

20 Push(S,xg); .O(1)
21 G = G

⋃
{xg}; .O(1)

Algorithm 1 summarizes the proposed method. To overcome the computational
limitations of naive GPs with time complexity O(n3

q), we employ a Gaussian pro-
cess with generalized histogram intersection kernels to speed up the naive GPs to
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O(nq lognq) where nq is the set cardinality of Oq [22]. Recall that ν refers the num-
ber of ellipse centers, and we initially set Oq = /0, X∗q = /0, and G = /0. For the
coverage process, Algorithm 1 details the pseudocode, which leads to the following
complexity result.

Lemma 3 Boundary coverage algorithm for an UTF runs in O(νnq lognq) time,
where nq is the set cardinality of Oq, and ν is the number of ellipses to enclose the
UTF.

6 Experimental Result

We have implemented the proposed method in Matlab on a Laptop PC with an In-
tel(R) CoreTM2 i7-3517U CPU@1.90GHz and 8 GB memory. To verify the pro-
posed local coverage method, we simulate different field shapes to test our ap-
proach (see Table 1). It includes both simple geometric shapes such as lines, circles,
squares, and two complex shapes including storm cells and an island. Fig. 3 shows
the images of the two complex shapes. Each image has a resolution of 720× 480
pixels.

To measure our algorithm’s boundary coverage capability, we define AL as the
boundary area covered using our method, and A as the actual area the UTF boundary
occupies. We evaluate the coverage ratio βr by using:

βr =
|AL∩A|
|A|

. (25)

We set the value ds = 1 for the simple geometric shapes and ds equal to 20 pixels
for the two image-based case.

Table 1 local coverage experiment settings and results.

UTF Type f j(x) Dimension Boundary Shape βr β

Line 2x− y+5 = 0 with 3≤ x≤ 12 1D smooth convex 98.12% 95.00%
Circle 25− (x−6)2− (y−6)2 ≥ 0 2D smooth convex 97.56% 95.00%
Square |x−5| ≤ 6, |y−5| ≤ 6 2D non-smooth convex 93.34% 90.00%

Storm cell see Fig. 3(a) 2D non-smooth non-convex 87.32% 85.00%
Island see Fig. 3(b) 2D non-smooth non-convex 88.59% 85.00%

The experimental settings and results are shown in Table 1. The last two rows
show that for a given different threshold β , our algorithm has guaranteed that the
actual coverage is no less than β for all testing cases, which is conformal to our
analysis. Also, the sample robot trajectories for boundary traversing are illustrated
as green piecewise linear curves in the right side of Fig. 3. It is clear that the robot
successfully covers the both testing cases.
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(a)

(b)

Fig. 3 Local coverage testing with real image data and robot coverage path. a) A weather radar
map showing a storm cell. b) An island map.

7 Conclusion and Future Work

We introduced a new UTF boundary coverage problem with many applications. We
reported a probabilistic boundary coverage method for addressing UTF problems.
We generated a sequence of ellipses to cover UTF boundary. The introduction of el-
lipse sequence also allowed us to decompose the long trajectory traversing problem
to multiple local problems with each ellipse represented a local problem. In each
local problem, we employed Gaussian processes (GPs) as a local belief function to
approximate field distribution. The local belief function allows us to predict UTF
boundary trends and establish adjacent ellipses for further exploration. The process
was governed by a depth-first search process until UTF is approximately enclosed
by connected ellipses. We formally proved that our boundary coverage process guar-
antees the enclosure above a given coverage ratio with a preset probability thresh-
old. We implemented our algorithm and successfully tested it in experiments with
different field types.

In the future, we will perform physical experiments using bridge deck scanning
and storm cell mapping applications. We will provide overall trajectory length pre-
diction for the algorithm. We will consider a multiple robot team and moving targets.
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We will also consider robots/UAVs with kinodynamic constraints in the trajectory
generation.
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