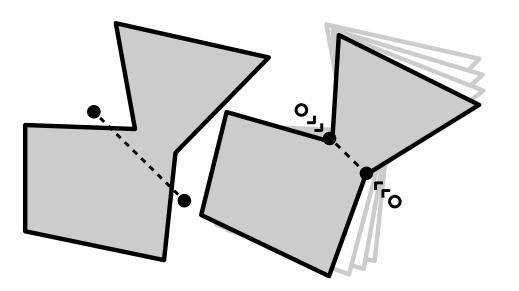
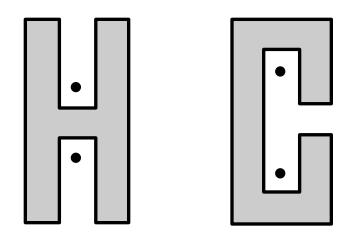
From Caging to Grasping


ICRA 2011 Workshop on Uncertainty in Automation

Alberto Rodriguez, Matthew T. Mason and Steve Ferry

May 9, 2011

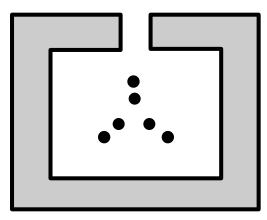
Caging


I. Non-prehensile manipulation.

II. Waypoint to a grasp.

From Caging to Grasping

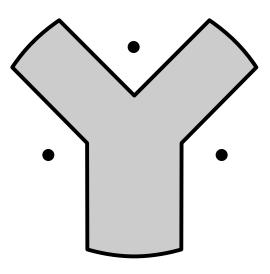
- Two-fingered manipulators:
 - $\checkmark\,$ Squeezing and Stretching conditions.



- \checkmark Infallible strategy to reach a grasp.
- \checkmark All two-finger cages: pregrasping cages.

From Caging to Grasping

- N-fingered manipulators:
 - \checkmark Can we always infallibly grasp an object beginning from a cage?



 \checkmark Not all cages are pregrasping cages.

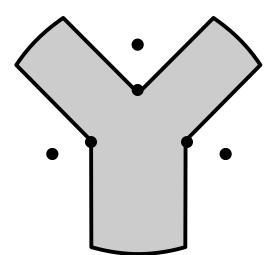
From Caging to Grasping

• N-fingered manipulators:

- \checkmark Extend the squeezing/stretching characterization.
- ✓ Naturally gives pregrasping cages.

Related Work

- Caging for grasping:
 - ✓ Davidson and Blake (1998).
 - ✓ Sudsang, Ponce and Srinivasa (1999).
 - ✓ Gopalakrishnan and Goldberg (2002).
- Caging with N-fingers:
 - ✓ Rimon and Blake (1999).
 - ✓ Pereira, Campos and Kumar (2004).
 - ✓ Pipattanasomporn, Vogmasa and Sudsang (2008).


Definitions

• Cage

✓ No manipulator escaping path while moving as a rigid object.

• Grasping cage

- ✓ Cage for which a subset of the fingers holds an equilibrium grasp.
- Pregrasping cage
 - ✓ Exists a caging path to a grasping cage.

2-Finger Caging

- Distance between the fingers
- Consider level sets
- Caged

$$D: \mathcal{M}_2 \longrightarrow \mathbb{R}$$
$$D^{-1}(d_0)$$

- \Leftrightarrow No escape path while $D = d_0$
- Squeezing/Stretching caged
- $\Leftrightarrow \text{ No escape path} \\ \text{ while } D \leq \textit{/} \geq d_0$

All caging configurations are either squeezing, stretching, or both

N-Finger Caging

2-fingers

N-fingers

 $\begin{array}{l}
E: \mathcal{M}_{2} \longrightarrow \mathbb{R} \\
\mathcal{D}^{-1}(f_{0}) \\
\Leftrightarrow \text{ No escape path while } \mathcal{D} = f_{0} \\
\Leftrightarrow \text{ No escape path while } \mathcal{D} < f_{0}
\end{array}$

Note: Equivalent if n = 2 and F = D.

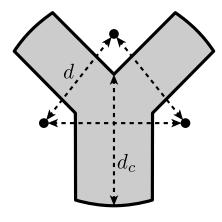
N-Finger Caging

Equivalent Theorem

All F-caging configurations are either F-squeezing, F-stretching, or both

Corollarium

All F-cages are pregrasping cages. (certain conditions on F)



Example I

• Energy of the finger formation:

$$F = \frac{1}{2} \sum_{\substack{i, j \in 1...n \\ i \neq j}} d^2 (p_i, p_j)$$

if initially: $F < 2d_c^2$

F-squeezing cage

Example II

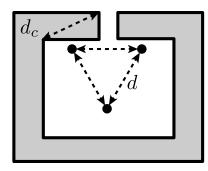
• Maximum finger-finger distance:

$$F_{max} = \max_{i,j\in 1\dots n} d\left(p_i, p_j\right)$$

if initially:

 $F_{max} < d_c$

 d_c


d

Example III

• Minimum finger-finger distance:

$$F_{min} = \min_{i,j\in 1...n} d\left(p_i, p_j\right)$$

if initially:

 $F_{min} > d_c$

 F_{min} -stretching cage

Summary

• Pregrasping cages:

 \checkmark Some cages better than others.

- Given F defined on finger formation, F-cages:
 - \checkmark Object will never escape while maintaining the value of F.
 - \checkmark Grasp the object by increasing/decreasing F.

F-cage \mathbf{Freg} rasping Caggess \subsetneq

